In a model of homeostatic plasticity, hippocampal slice culture CA3 pyramidal neurons responded to excitatory synapse inactivity by enhancing glutamate release through an increased number of miniature excitatory post-synaptic currents, mEPSCs and excitatory pre-synaptic terminals. Also accompanying these changes was a specific reduction in the expression of a "fast" calcium transporter, the plasma membrane calcium ATPase, PMCA2a. This transporter normally influences glutamate release from excitatory terminals where it helps control calcium levels. The reduction in PMCA2a expression occurred within 2 days of synapse inactivity; it was specific and reversible in young and mature hippocampal slice cultures and required removal of NMDA receptor mediated activity. Furthermore, the enhanced mEPSCs in the model were resistant to pharmacological inhibition of PMCA transporter activity. Reduced expression of PMCA2a during homeostatic plasticity therefore provides a mechanism to remodel pre-synaptic Ca2+ dynamics as a flexible way to alter glutamate release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2009.04.011DOI Listing

Publication Analysis

Top Keywords

homeostatic plasticity
12
glutamate release
12
reduced expression
8
expression "fast"
8
"fast" calcium
8
calcium transporter
8
pmca2a homeostatic
8
hippocampal slice
8
synapse inactivity
8
calcium
4

Similar Publications

Glia are increasingly appreciated as serving an important function in the control of sleep and circadian rhythms. Glial cells in Drosophila and mammals regulate daily rhythms of locomotor activity and sleep as well as homeostatic rebound following sleep deprivation. In addition, they contribute to proposed functions of sleep, with different functions mapping to varied glial subtypes.

View Article and Find Full Text PDF

Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals.

View Article and Find Full Text PDF

Plasticity is needed during development and homeostasis to generate diverse cell types from stem and progenitor cells. Following differentiation, plasticity must be restricted in specialized cells to maintain tissue integrity and function. For this reason, specialized cell identity is stable under homeostatic conditions; however, cells in some tissues regain plasticity during injury-induced regeneration.

View Article and Find Full Text PDF

Excitatory-inhibitory homeostasis and bifurcation control in the Wilson-Cowan model of cortical dynamics.

PLoS Comput Biol

January 2025

Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.

Although the primary function of excitatory-inhibitory (E-I) homeostasis is the maintenance of mean firing rates, the conjugation of multiple homeostatic mechanisms is thought to be pivotal to ensuring edge-of-bifurcation dynamics in cortical circuits. However, computational studies on E-I homeostasis have focused solely on the plasticity of inhibition, neglecting the impact of different modes of E-I homeostasis on cortical dynamics. Therefore, we investigate how the diverse mechanisms of E-I homeostasis employed by cortical networks shape oscillations and edge-of-bifurcation dynamics.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is a common comorbidity in kidney transplant recipients, representing a significant proportion of the candidate pool. Post-kidney transplantation management of T2D remains challenging, leading to inferior long-term outcomes compared to non-diabetic recipients. This study aimed to assess the association between Homeostatic Model Assessment 2 (HOMA2) derived insulin resistance and beta-cell function on kidney graft outcomes in T2D kidney transplant recipients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!