The sensitization of spinal dorsal horn neurones leads to prolonged enhancement of pain behaviour and can be evoked by intense C-fibre stimulation, tissue inflammation and peripheral nerve injury. Activation of central immune cells plays a key role in establishing pain hypersensitivity but the exact nature of the afferent input that triggers the activation of microglia and other glial cells within the CNS, remains unclear. Here intense but non-damaging, electrical stimulation of intact adult rat C-fibres for 5 min at 10 Hz induced central sensitization characterized by significant decreases in mechanical withdrawal thresholds 3, 24 and 48 h later. This maintained (>3 h) hypersensitivity was not observed following topical skin application of capsaicin. C-fibre evoked sensitization was accompanied by significant microglial activation, shown by increased Iba-1 immunoreactivity throughout the dorsal horn at 24 and 48 h and significant upregulation of markers of microglial activation: IL-6 and Mcp-1 at 3h and Mmp3, CSF-1 and CD163 at 24 and 48 h. C-fibre stimulation caused no nerve damage at ultrastructural and molecular levels. Lower intensity stimulation that did not activate C-fibres or sham stimulation did not increase Iba-1 immunoreactivity or induce behavioural sensitivity. Pre-treatment with minocycline (40 mg/kg, i.p.) prevented the C-fibre evoked sensitization and microglial activation. Identical C-fibre stimulation in 10-day old rat pups failed to activate microglia or change behaviour. These results demonstrate that a brief period of low frequency C-fibre stimulation, in the absence of nerve damage, is sufficient to activate microglia resulting in behavioural hyperalgesia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702711 | PMC |
http://dx.doi.org/10.1016/j.pain.2009.03.022 | DOI Listing |
Cureus
December 2024
Division of Dental Anesthesiology, Faculty of Dentistry Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JPN.
Background There are many reports of anatomical and physiological studies on trigeminal ganglion neurons, but few studies have analyzed temporal changes in the excitation of the trigeminal ganglion. This study aimed to establish an experimental system for spatial and temporal imaging analysis of the excitatory dynamics of trigeminal ganglion cells evoked by stimulation of a peripheral branch of the trigeminal nerve. Methods After excision of the trigeminal ganglion with the inferior alveolar nerve (IAN) from Sprague Dawley rats (seven to nine weeks old), 400-µm-thick slices of the trigeminal ganglion with the IAN were prepared.
View Article and Find Full Text PDFJ Anesth
January 2025
Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
Neurosci Lett
January 2025
Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Cir, Baltimore, MD 21224, USA. Electronic address:
In mammals, many Hymenopteran stings are characterized by pain, redness, and swelling - three manifestations consistent with nociceptive nerve fiber activation. The effect of a Western honeybee (Apis mellifera) venom on the activation of sensory C-fibers in mouse skin was studied using an innervated isolated mouse skin preparation that allows for intra-arterial delivery of chemicals to the nerve terminals in the skin. Our data show that honeybee venom stimulated mouse cutaneous nociceptive-like C-fibers, with an intensity (action potential discharge frequency) similar to that seen with a maximally-effective concentration of capsaicin.
View Article and Find Full Text PDFCommun Biol
November 2024
Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
J Neurophysiol
December 2024
Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!