A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. | LitMetric

AI Article Synopsis

  • The study focuses on developing and optimizing a new type of polymeric mixed micelle made from Pluronic P123 and F127, designed to carry the chemotherapy drug paclitaxel (PTX).
  • The research utilized a Doehlert matrix to analyze how different factors, including the composition of the micelle and hydration conditions, affect the drug's loading and stability, leading to a highly efficient formulation.
  • Results showed that the PTX-loaded micelles had a very small particle size, high encapsulation efficiency, and significantly greater cytotoxic effects against lung cancer cells compared to traditional Taxol treatments.

Article Abstract

The objective of this study was to optimize and characterize a novel polymeric mixed micelle composed of Pluronic P123 and F127 loaded with paclitaxel (PTX). A Doehlert matrix design was utilized to investigate the effect of four variables, namely P123 mass fraction, amount of water, feeding of PTX and hydration temperature on the responses including drug-loading coefficient (DL %), encapsulation ratio (ER %) and the percentage of PTX precipitated from the drug-loaded mixed micelles after 48 h at 37 (PTX precipitated %) for improvement of drug solubilization efficiency and micelle stability. PTX-loaded P123/F127 mixed micelles were prepared by thin-film hydration method. The optimized formulation showed a particle size of about 25 nm with ER %>90%, and a sustained release behavior compared to Taxol. Micelle formation was confirmed by NMR spectroscopy. The mixed micelles had a low CMC of 0.0059% in water. In addition, micelle stability studies implied that introduction of Pluronic F127 (33 wt%) into P123 micelle system significantly increased the stability of PTX-loaded micelles. More importantly, in vitro cytotoxicity was assessed using human lung adenocarcinoma cell lines SPC-A1 and A-549 and was compared to Taxol and the free drug. The cell viability assay against A-549 cells exhibited the 50% inhibition concentration (IC50) of PTX-loaded P123/F127 mixed micelles (0.1 microg/ml) was much lower than those of Taxol injection (0.4 microg/ml) and the free PTX (1.7 microg/ml). Therefore, PTX-loaded P123/F127 mixed micelles may be considered as an effective anticancer drug delivery system for cancer chemotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2009.04.030DOI Listing

Publication Analysis

Top Keywords

mixed micelles
20
p123/f127 mixed
16
ptx-loaded p123/f127
12
ptx precipitated
8
micelle stability
8
stability ptx-loaded
8
compared taxol
8
mixed
7
micelles
7
micelle
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!