Actin and myosin form the molecular motor in muscle. Myosin is the enzyme performing ATP hydrolysis under the allosteric control of actin such that actin binding initiates product release and force generation in the myosin power stroke. Non-equilibrium Monte Carlo molecular dynamics simulation of the power stroke suggested that a structured surface loop on myosin, the C-loop, is the actin contact sensor initiating actin activation of the myosin ATPase. Previous experimental work demonstrated C-loop binds actin and established the forward and reverse allosteric link between the C-loop and the myosin active site. Here, smooth muscle heavy meromyosin C-loop chimeras were constructed with skeletal (sCl) and cardiac (cCl) myosin C-loops substituted for the native sequence. In both cases, actin-activated ATPase inhibition is indicated mainly by the lower V(max). In vitro motility was also inhibited in the chimeras. Motility data were collected as a function of myosin surface density, with unregulated actin, and with skeletal and cardiac isoforms of tropomyosin-bound actin for the wild type, cCl, and sCl. Slow and fast subpopulations of myosin velocities in the wild-type species were discovered and represent geometrically unfavorable and favorable actomyosin interactions, respectively. Unfavorable interactions are detected at all surface densities tested. Favorable interactions are more probable at higher myosin surface densities. Cardiac tropomyosin-bound actin promotes the favorable actomyosin interactions by lowering the inhibiting geometrical constraint barriers with a structural effect on actin. Neither higher surface density nor cardiac tropomyosin-bound actin can accelerate motility velocity in cCl or sCl, suggesting the element initiating maximal myosin activation by actin resides in the C-loop.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759872 | PMC |
http://dx.doi.org/10.1021/bi900584q | DOI Listing |
J Cell Sci
January 2025
School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
The cytoplasm exhibits viscoelastic properties, displaying both solid and liquid-like behavior, and can actively regulate its mechanical attributes. The cytoskeleton is a major regulator among the numerous factors influencing cytoplasmic mechanics. We explore the interdependence of various cytoskeletal filaments and the impact of their density on cytoplasmic viscoelasticity.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.
Pluripotent Stem Cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, while different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here we investigated how the actin cytoskeleton is regulated in different pluripotency states.
View Article and Find Full Text PDFBackground: Previous studies have suggested that changes in the composition of the extracellular matrix (ECM) play a significant role in the development of ligamentum flavum hypertrophy (LFH) and the histological differences between the ventral and dorsal layers of the hypertrophied ligamentum flavum. Although LFH is associated with increased fibrosis in the dorsal layer, comprehensive research exploring the characteristics of the ECM and its mechanical properties in both regions is limited. Furthermore, the distribution of fibrosis-associated myofibroblasts within LFH remains poorly understood.
View Article and Find Full Text PDFPsychiatry Investig
January 2025
Department of Biomedical Sciences, Center for Glocal Future Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea.
Objective: This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity.
Methods: Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs.
Biophys J
January 2025
Div. of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India. Electronic address:
The polymerization of cytoskeletal filaments is regulated by both biochemical pathways, as well as physical factors such as crowding. The effect of crowding in vivo emerges from the density of intracellular components. Due to the complexity of the intracellular environment, most studies are based on either in vitro reconstitution or theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!