It is generally accepted that nerve fiber conduction velocity is directly proportional to the fiber diameter under the condition, based on a supposition, that the transverse area of axons is normally maintained constant. Using an ideal preparation method for the purpose of axonal discrimination, we examined 43 human spinal cords after making transverse sections at the cervical, thoracic, lumbar and sacral levels and found a tapering of the axons in the lateral pyramidal tract, as the cross-sectional area of the pyramidal axons showed a definite decrease from the cervical to the sacral levels. Our results contradict the supposition that the transverse area of axons is normally maintained constant, which has for a long time been believed to be true without any evidence for it.

Download full-text PDF

Source
http://dx.doi.org/10.2535/ofaj.85.111DOI Listing

Publication Analysis

Top Keywords

pyramidal tract
8
tapering axons
8
supposition transverse
8
transverse area
8
area axons
8
axons maintained
8
maintained constant
8
sacral levels
8
axons
5
morphological evaluation
4

Similar Publications

Acute hypoalgesic and neurophysiological responses to lower-limb ischaemic preconditioning.

Exp Brain Res

January 2025

Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, UK.

The aim of this study was to assess if ischaemic preconditioning (IPC) can reduce pain perception and enhance corticospinal excitability during voluntary contractions. In a randomised, within-subject design, healthy participants took part in three experimental visits after a familiarisation session. Measures of pressure pain threshold (PPT), maximum voluntary isometric force, voluntary activation, resting twitch force, corticospinal excitability and corticospinal inhibition were performed before and ≥10 min after either, unilateral IPC on the right leg (3 × 5 min); a sham protocol (3 × 1 min); or a control (no occlusion).

View Article and Find Full Text PDF

Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.

View Article and Find Full Text PDF

Cortical layer 5 (L5) intratelencephalic (IT) and pyramidal tract (PT) neurons are embedded in distinct information processing pathways. Their morphology, connectivity, electrophysiological properties, and role in behavior have been extensively analyzed. However, the molecular composition of their synapses remains largely uncharacterized.

View Article and Find Full Text PDF

Introduction/objective: Biallelic expansion of the pentanucleotide AAGGG in the RFC1- gene is associated with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). This study aimed to comprehensively characterise this condition by conducting an in-depth neurophysiological examination of afflicted patients.

Methods: A retrospective analysis was conducted in 31 RFC1-positive patients.

View Article and Find Full Text PDF

Background: Acute brainstem infarction is associated with high morbidity and mortality, the integrity of corticospinal tract (CST) detected via diffusion tensor imaging (DTI) can assist in predicting the motor recovery of the patients. In addition to the damage caused by ischemia and reperfusion, sterile inflammation also contributes to the brain injury after stroke. However, the changes in CST integrity detected by DTI in acute brainstem infarction have yet to be fully elucidated, and it is still unclear whether sterile inflammation can cause damage to the CST.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!