Biological activity of diuretic factors on the anterior midgut of the blood-feeding bug, Rhodnius prolixus.

Gen Comp Endocrinol

Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada.

Published: May 2009

Probing of a host and ingestion of a blood-meal in a fifth instar Rhodnius prolixus results in a cascade of tightly integrated events, including salivary gland secretion, plasticization of the abdominal cuticle, increased ion and water movement across the anterior midgut (crop) and Malpighian tubules (which rapidly produce urine) and the regular expulsion of urine from the hindgut. In this study we have focussed on the role of the anterior midgut during the rapid postprandial diuresis. The huge blood-meal is pumped into the anterior midgut, during feeding, then modified by diuresis and stored until it is digested. Changes in the anterior midgut activity are rapid. Within minutes of the commencement of feeding there is an increase in the frequency of anterior midgut contractions and diuresis begins with the movement of salt and water across the epithelium of the anterior midgut into the haemolymph. While serotonin, a diuretic hormone in R. prolixus, is known to play a role in the physiological activity of the anterior midgut, we were interested in exploring further the role of serotonin, and other diuretic peptides. We have tested the activity of several peptides, including R. prolixus calcitonin-like diuretic hormone (Rhopr-DH 31), corticotropin-releasing factor (CRF)-like peptide from Zootermopsis nevadensis DH (Zoone-DH) and a kinin from Leucophaea maderae, Leucokinin 1 (LK1). These peptides families are known to be present in the central nervous system of R. prolixus, are putative neurohormones released into the haemolymph after the start of feeding, and have been shown to have activity on a variety of tissues involved in post-feeding diuresis. We show here that both serotonin and Zoone-DH increase the cAMP content of the anterior midgut and that serotonin, Zoone-DH and cAMP analogues increase absorption of water from the anterior midgut, increase the short circuit current and voltage, while decreasing the resistance across the epithelium. While LK1 and Rhopr-DH 31 do not significantly increase absorption, or short circuit current, LK1 does significantly decrease the resistance and transepithelial voltage of the anterior midgut epithelium. All of the factors studied increase the frequency of contractions of the anterior midgut.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2009.01.025DOI Listing

Publication Analysis

Top Keywords

anterior midgut
48
anterior
12
midgut
12
rhodnius prolixus
8
increase frequency
8
serotonin diuretic
8
diuretic hormone
8
serotonin zoone-dh
8
increase absorption
8
short circuit
8

Similar Publications

Background: The superior mesenteric vein appears as a fusion between irregularly-shaped slits of the midgut mesentery tissue at 5-6 weeks. In contrast, there might be no report when and how the inferior mesenteric vein (IMV) develops. We aimed to find the human initial IMV.

View Article and Find Full Text PDF

Toxicokinetics and tissue dynamics approaches to evaluate the accumulation and elimination of cadmium in black soldier fly larvae.

Ecotoxicol Environ Saf

December 2024

Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

The black soldier fly larvae (BSFL) is a highly valued resource insect, renowned for its efficient and eco-friendly approach to the treatment of organic waste. A crucial matter that demands clarification is whether the heavy metals are eliminated or remain within BSFL bodies. Our research focused on the toxicokinetic and the dynamic tissue changes of cadmium (Cd) in BSFL exposed to low (50 mg/kg), moderate (300 mg/kg), and high levels (700 mg/kg) of Cd stress, with the goal of offering a novel perspective on this matter.

View Article and Find Full Text PDF

The rise of atmospheric oxygen as a result of photosynthesis in cyanobacteria and chloroplasts has transformed most environmental iron into the ferric state. In contrast, cells within organisms maintain a reducing internal milieu and utilize predominantly ferrous iron. Ferric reductases are enzymes that transfer electrons to ferric ions, either extracellularly or within endocytic vesicles, enabling cellular ferrous iron uptake through Divalent Metal Transporter 1.

View Article and Find Full Text PDF

Lipophorin receptor knockdown reduces hatchability of kissing bug Rhodnius prolixus eggs.

Insect Biochem Mol Biol

January 2025

Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil; Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil. Electronic address:

Lipophorin is the primary lipoprotein present in the hemolymph of insects, responsible for the lipids' transport between organs. It interacts with specific sites on cell membranes in an essential process for transferring lipids. The lipophorin receptor is the protein responsible for the interaction between lipophorin and cell membranes.

View Article and Find Full Text PDF

Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In , production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!