The absolute configuration of semisynthetic (-)-3alpha,6beta-acetoxytropane 1, prepared from (-)-6beta-hydroxyhyoscyamine 2, has been determined using vibrational circular dichroism (VCD) spectroscopy. The vibrational spectra (IR and VCD) were calculated using DFT at the B3LYP/DGDZVP level of theory for the eight more stable conformers which account for 99.97% of the total relative abundance in the first 10 kcal/mol range. The calculated VCD spectra of all considered conformations showed two distinctive spectral ranges, one between 1300 and 1200 cm(-1), and the other one in the 1150-950 cm(-1) region. When compared with the experimental VCD spectrum, the first spectral region confirmed the calculated conformational preferences, whereas the second region showed little change with conformation, thus allowing the determination of the absolute configuration of 1 as (3S,6S)-3alpha,6beta-diacetoxytropane. Also, the bands in the second region showed similarities between 1 and 2 in both the experimental and calculated VCD spectra, suggesting that these bands are mainly related to the absolute configuration of the rigid tropane ring system, since they show conformational independency, no variations with the nature of the substituent, and are composed by closely related vibrational modes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chir.20734 | DOI Listing |
Phytochemistry
January 2025
Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China. Electronic address:
On the basis of the co-culture strategy, five previously undescribed S-bridged pyranonaphthoquinones, crepidamycins A-E (1-5) and five known analogues (6-10) were isolated from a medicinal plant endophytic Streptomyces sp. MG-F-1 in Dendrobium crepidatum with Bacillus cereus MG-1. The structures and absolute configurations of 1-5 were elucidated by the interpretation of data from detailed spectroscopic analysis and electronic circular dichroism spectra, together with consideration of the biogenetic origins.
View Article and Find Full Text PDFSaline-tolerant medicinal plants possess novel chemical constituents with high bioactivity because of their unique secondary metabolic pathways. an aquatic plant found in the coastal wetlands of the Yellow River Delta, was collected and studied in the present work. Ten drimane-type sesquiterpenoids and four triterpenoids, including six new ones (sinenseines A-F), were isolated from a whole plant of for the first time.
View Article and Find Full Text PDFHeliyon
January 2025
Center of Chemical Innovation for Sustainability (CIS), and School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
Phytochemical investigation of the leaf extract of Roxb. ex Hornem led to the isolation and identification of two new highly oxygenated cyclohexenes, uvariagrandols A () and B (), together with seven known compounds (-). Their structures were elucidated by spectroscopic methods as well as comparisons made from the literature.
View Article and Find Full Text PDFACS Med Chem Lett
January 2025
Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
Inhibiting phosphofructokinase-1 (PFK1) is a promising approach for treating lactic acidosis and mitochondrial dysfunction by activating oxidative phosphorylation. Tryptolinamide (TLAM) has been shown as a PFK1 inhibitor, but its complex stereochemistry, with 16 possible isomers complicates further development. We conducted an asymmetric synthesis, determined the absolute configurations, and evaluated the PFK1 inhibitory activity of the TLAM isomers.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
Chiral discrimination is an indispensable tool that has pivotal importance in the assignment of absolute configuration and determination of enantiomeric excess in chiral compounds. A series of enantiomerically pure -1,2-diaminocyclohexane (-DACH)-derived benzamides were first synthesized by simple chemical steps, and 14 variated derivatives have been assessed as NMR chiral solvating agents (CSAs) for discrimination of the signals of mandelic acid (MA) in H NMR analysis. The highly efficient chiral recognition of CSA on different substrates, including MAs, carboxylic acids, amino acid derivatives, and phosphoric acids (32 examples), was expanded via H, F, and P NMR spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!