Discrete responses of myenteric neurons to structural and functional damage by neurotoxins in vitro.

Am J Physiol Gastrointest Liver Physiol

Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, Ontario K7L 2V6, Canada.

Published: July 2009

Damage to the enteric nervous system is implicated in human disease and animal models of inflammatory bowel disease, diabetes, and Parkinson's disease, but the mechanism of death and the response of surviving neurons are poorly understood. We explored this in a coculture model of myenteric neurons, glia, and smooth muscle during exposure to the established or potential neurotoxins botulinum A, hydrogen peroxide, and acrylamide. Neuronal survival, axonal degeneration and regeneration, and neurotransmitter release were assessed during acute exposure (0-24 h) to neurotoxin and subsequent recovery (96-144 h). Unique and selective responses to each neurotoxin were found with acrylamide (0.5-2.0 mM) causing a 30% decrease in axon number without neuronal loss, whereas hydrogen peroxide (1-200 microM) caused a parallel loss in both axon and neuron number. Immunoblotting identified the loss of synaptic vesicle proteins that paralleled axon damage and was associated with marked suppression of depolarization-induced release of acetylcholine (ACh). The caspase inhibitor zVAD, but not DEVD, significantly prevented neuronal death, implying a largely caspase-3/7-independent mechanism of apoptotic death that was supported by staining for annexin V and cleaved caspase-3. In contrast, botulinum A (2 microg/ml) caused a 40% decrease in ACh release without effect on neuronal survival or axon structure. By 96 h after exposure to acrylamide or hydrogen peroxide, axon number was restored to or even surpassed the level of time-matched controls, regardless of partial neuronal loss, but ACh release remained markedly suppressed. Neural responses to toxic factors are initially unique but then converge upon robust axonal regeneration, whereas neurotransmitter release is both vulnerable to damage and slow to recover.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.90705.2008DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
12
myenteric neurons
8
neuronal survival
8
regeneration neurotransmitter
8
neurotransmitter release
8
axon number
8
neuronal loss
8
ach release
8
neuronal
5
release
5

Similar Publications

Insights of cellular and molecular changes in sugarcane response to oxidative signaling.

BMC Plant Biol

January 2025

Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.

Significant changes in the proteome highlight essential metabolic adaptations for development and oxidative signaling induced by the treatment of young sugarcane plants with hydrogen peroxide. These adaptations suggest that hydrogen peroxide acts not only as a stressor but primarily as a signaling molecule, triggering specific metabolic pathways that regulate growth and plant resilience. Sugarcane is a crucial crop for sugar and ethanol production, often influenced by environmental signals.

View Article and Find Full Text PDF

Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.

View Article and Find Full Text PDF

The lipoxygenase (LOX) gene family is widely distributed in plants, and its activity is closely associated with seed viability and stress tolerance. In this study, we cloned the rice(Oryza sativa)lipoxygenase gene OsLOX1, a key participant in the 13-lipoxygenase metabolic pathway. Our primary focus was to investigate its role in mediating responses to drought stress and seed germination in rice.

View Article and Find Full Text PDF

Enabling tumor-specific drug delivery by targeting the Warburg effect of cancer.

Cell Rep Med

January 2025

Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA. Electronic address:

Metabolic reprogramming of tumor cells is an emerging hallmark of cancer. Among all the changes in cancer metabolism, increased glucose uptake and the accumulation of lactate under normoxic conditions (the "Warburg effect") is a common feature of cancer cells. In this study, we develop a lactate-responsive drug delivery platform by targeting the Warburg effect.

View Article and Find Full Text PDF

Quadruple perovskite oxides have received extensive attention in electronics and catalysis, owing to their cation-ordering structure and intriguing physical properties. However, their repertoires still remain limited. In particular, piezoelectricity from quadruple perovskites has been rarely reported due to the frustrated symmetry-breaking transition in A-site-ordered perovskite structures, disabling their piezoelectric applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!