In silico miRNA prediction in metazoan genomes: balancing between sensitivity and specificity.

BMC Genomics

Applied Bioinformatics, Plant Research International, Wageningen University & Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands.

Published: April 2009

AI Article Synopsis

  • MicroRNAs (miRNAs) are crucial for regulating gene expression, yet many remain undiscovered due to limited research techniques.
  • A new prediction strategy called the L score evaluates genomic hairpins for their likelihood of being true miRNA hairpins, using data from known miRNA properties.
  • This method shows high sensitivity in identifying novel miRNAs, outperforming traditional prediction methods while providing clearer insights into the miRNA selection process.

Article Abstract

Background: MicroRNAs (miRNAs), short approximately 21-nucleotide RNA molecules, play an important role in post-transcriptional regulation of gene expression. The number of known miRNA hairpins registered in the miRBase database is rapidly increasing, but recent reports suggest that many miRNAs with restricted temporal or tissue-specific expression remain undiscovered. Various strategies for in silico miRNA identification have been proposed to facilitate miRNA discovery. Notably support vector machine (SVM) methods have recently gained popularity. However, a drawback of these methods is that they do not provide insight into the biological properties of miRNA sequences.

Results: We here propose a new strategy for miRNA hairpin prediction in which the likelihood that a genomic hairpin is a true miRNA hairpin is evaluated based on statistical distributions of observed biological variation of properties (descriptors) of known miRNA hairpins. These distributions are transformed into a single and continuous outcome classifier called the L score. Using a dataset of known miRNA hairpins from the miRBase database and an exhaustive set of genomic hairpins identified in the genome of Caenorhabditis elegans, a subset of 18 most informative descriptors was selected after detailed analysis of correlation among and discriminative power of individual descriptors. We show that the majority of previously identified miRNA hairpins have high L scores, that the method outperforms miRNA prediction by threshold filtering and that it is more transparent than SVM classifiers.

Conclusion: The L score is applicable as a prediction classifier with high sensitivity for novel miRNA hairpins. The L-score approach can be used to rank and select interesting miRNA hairpin candidates for downstream experimental analysis when coupled to a genome-wide set of in silico-identified hairpins or to facilitate the analysis of large sets of putative miRNA hairpin loci obtained in deep-sequencing efforts of small RNAs. Moreover, the in-depth analyses of miRNA hairpins descriptors preceding and determining the L score outcome could be used as an extension to miRBase entries to help increase the reliability and biological relevance of the miRNA registry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688010PMC
http://dx.doi.org/10.1186/1471-2164-10-204DOI Listing

Publication Analysis

Top Keywords

mirna hairpins
24
mirna hairpin
16
mirna
15
silico mirna
8
mirna prediction
8
hairpins
8
mirbase database
8
hairpin
5
prediction
4
prediction metazoan
4

Similar Publications

When a body is discovered at a crime or murder scene, it is crucial to examine the body and estimate its postmortem interval (PMI). Accurate estimation of PMI is vital for identifying suspects and providing clues to resolve the case. MicroRNAs (miRNAs or miRs) are small non-coding RNAs that remain relatively stable in the cell nucleus even after death-related changes occur.

View Article and Find Full Text PDF

CRISPR/Cas12a-Powered Electrochemical Platform for Dual-miRNA Detection via an AND Logic Circuit.

Anal Chem

December 2024

Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.

The CRISPR/Cas technology shows great potential in molecular detection and diagnostics. However, it is still challenging to detect multiple targets simultaneously using the CRISPR-Cas system. Herein, we ingeniously leverage the synergistic effect of two short single-stranded DNA activators to construct a CRISPR/Cas12a-driven electrochemical sensing platform based on an AND logic circuit ("AND" LC-CRISPR) for the simultaneous detection of dual miRNAs.

View Article and Find Full Text PDF

A novel electrochemiluminescence (ECL) biosensor was developed for the ultrasensitive detection of miRNA-155, based on the synergistic combination of multifunctional nanomaterials. The biosensor employed a conductive metal-organic framework (MOF), Ni(HAB) (HAB = hexaaminobenzene), as the substrate material. The unique π-electron conjugated structure of Ni(HAB) endowed the biosensor with excellent electron transport properties, significantly enhancing its sensitivity.

View Article and Find Full Text PDF

CRISPR/Cas12a-based diagnostics have great potential for sensing nucleic acids, but their application is limited by the sequence-dependent property. A platform termed miR-Cabiner (a universal NA sensing platform based on self-stacking scaded cyclic DA circuit-mdiated CISPR/Cas12a) is demonstrated herein that is sensitive and universal for analyzing miRNAs. This platform combines catalytic hairpin assembly (CHA) and hybrid chain reaction (HCR) into a unified circuit and finally cascades to CRISPR/Cas12a.

View Article and Find Full Text PDF

CRISPR/RNA Aptamer System Activated by an AND Logic Gate for Biomarker-Driven Theranostics.

J Am Chem Soc

December 2024

Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.

The development of an engineered RNA device capable of detecting multiple biomarkers to evaluate pathological states and autonomously implement responsive therapies is urgently needed. Here, we report InCasApt, an integrated nano CRISPR Cas13a/RNA aptamer theranostic platform capable of achieving both biomarker detection and biomarker-driven therapy. Within this system, a Cas13a/crRNA complex, a hairpin reporter (HR), a dinitroaniline caged Ce6 photosensitizer (Ce6-DN), and a DN-binding RNA aptamer precursor (DNBApt) are coloaded onto dendritic mesoporous silicon nanoparticles (DMSN) in a controlled manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!