A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Visualizing laser-skin interaction in vivo by multiphoton microscopy. | LitMetric

Visualizing laser-skin interaction in vivo by multiphoton microscopy.

J Biomed Opt

Far Eastern Memorial Hospital, Department of Dermatology, 21, Nan-Ya South Road, Section 2, Pan-Chiao, Taipei 220, Taiwan.

Published: July 2009

Recently, multiphoton microscopy has gained much popularity as a noninvasive imaging modality in biomedical research. We evaluate the potential of multiphoton microscopy for monitoring laser-skin reaction in vivo. Nude mouse skin is irradiated with an erbium:YAG laser at various fluences and immediately imaged by a multiphoton microscope. The alterations of cutaneous nonlinear optical properties including multiphoton autofluorescence and second-harmonic generation associated with laser irradiation are evaluated morphologically and quantitatively. Our results show that an erbium:YAG laser at a low fluence can selectively disrupt the stratum corneum, and this alteration may account for the penetration enhancing effect of laser-assisted transcutaneous drug delivery. At a higher fluence, the zone of tissue ablation as well as the disruption of the surrounding stratum corneum, keratinocytes, and dermal extracellular matrix can be better characterized by multiphoton microscopy as compared with conventional histology. Furthermore, the degree of collagen damage in the residual thermal zone can be quantified by second-harmonic generation signals, which have significant difference between control skin, skin irradiated with a 1.5-, 8-, and 16-J/cm2 erbium:YAG laser (P<0.05). We show that multiphoton microscopy can be a useful noninvasive imaging modality for monitoring laser-skin reaction in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.3116711DOI Listing

Publication Analysis

Top Keywords

multiphoton microscopy
16
erbiumyag laser
12
skin irradiated
8
second-harmonic generation
8
stratum corneum
8
multiphoton
6
visualizing laser-skin
4
laser-skin interaction
4
interaction vivo
4
vivo multiphoton
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!