We present data from the Floating Potential Measurement Unit (FPMU) that is deployed on the starboard truss of the International Space Station. The FPMU is a suite of instruments capable of redundant measurements of various plasma parameters. The instrument suite consists of a floating potential probe, a wide-sweeping spherical Langmuir probe, a narrow-sweeping cylindrical Langmuir probe, and a plasma impedance probe. This paper gives a brief overview of the instrumentation and the received data quality, and then presents the algorithm used to reduce I-V curves to plasma parameters. Several hours of data are presented from August 5, 2006 and March 3, 2007. The FPMU derived plasma density and temperatures are compared with the International Reference Ionosphere (IRI) and Utah State University-Global Assimilation of Ionospheric Measurement (USU-GAIM) models. Our results show that the derived in situ density matches the USU-GAIM model better than the IRI, and the derived in situ temperatures are comparable to the average temperatures given by the IRI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3116085 | DOI Listing |
Artif Intell Med
January 2025
Koç University, Department of Physics, Electrical and Electronics Engineering, Istanbul, Turkiye. Electronic address:
Deep neural networks have significantly advanced medical image classification across various modalities and tasks. However, manually designing these networks is often time-consuming and suboptimal. Neural Architecture Search (NAS) automates this process, potentially finding more efficient and effective models.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy.
Through detailed experimental and modeling activities, this paper investigates the origin of the temperature dependence of the Erase operation in 3D nand flash arrays. First of all, experimental data collected down to the cryogenic regime on both charge-trap and floating-gate arrays are provided to demonstrate that the reduction in temperature makes cells harder to Erase irrespective of the nature of their storage layer. This evidence is then attributed to the weakening, with the decrease in temperature, of the gate-induced drain leakage (GIDL) current exploited to set the electrostatic potential of the body of the nand strings during Erase.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
Functional fibrous membranes with high mechanical properties are intensively developed for different application fields. In this study, to enhance moisture and air permeability without compromising mechanical strength, a facile float-surface modification strategy is employed to fabricate Janus fibrous membranes with distinct hydrophobicity/hydrophilicity using the high-density polyethylene (HDPE) fibrous membranes. By coating one side of the HDPE fibrous membranes with polydopamine (PDA) and a superhydrophilic polyelectrolyte, the obtained Janus HDPE fibrous membranes demonstrate an excellent water transmission rate (577.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Laboratório de Ecologia de Sedimentos, Instituto de Biologia, Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, Brazil.
Submerged or partially floating seagrasses in marine or brackish waters form productive seagrass beds, feeding grounds for a rich and varied associated biota, play key ecological roles in mitigating climate change and provide ecosystem services for humanity. The objective of this study was to perform a temporal quali- and quantitative analysis on the scientific production on seagrasses in the Atlantic Ocean during last 64 years (1960 to 2024) through defined workflow by scientometric analysis on Scopus database. Publications in this database date back to 1969, comprising a total of 3.
View Article and Find Full Text PDFInsect Sci
January 2025
Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany.
Water striders inhabit the elastic surface tension film of water, sharing their environment with other aquatic organisms. Their survival relies heavily on swift maneuverability and navigation around floating obstacles, which aids in the exploration of their habitat and in escaping from potential threats. Their high agility is strongly based on the ability to execute precise turns, enabling effective directional control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!