The structure, electronic, magnetic properties of Si(n)Mn clusters up to n=15 are systematically investigated using the density functional theory within the generalized gradient approximation. In the most stable configurations of Si(n)Mn clusters, the equilibrium site of Mn atom gradually moves from convex, to a surface, and to a concave site as the number of Si atoms varying from 1 to 15. Starting from n=11, the Mn atom completely falls into the center of the Si outer frame, forming Mn-encapsulated Si cages. Maximum peaks of second-order energy difference are found at n=6, 8, 10, and 12, indicating that these clusters possess relatively higher stability. The electronic structures and magnetic properties of Si(n)Mn clusters are discussed. The magnetic moment of Si(n)Mn clusters mainly is located on Mn atom. The 3d electrons in Mn atom play a dominant role in the determination of the magnetism of Mn atom in Si(n)Mn clusters. Furthermore, the moment of Mn atom in Si(n)Mn clusters exhibits oscillatory behavior and are quenched at n>7 except for n=12, mainly due to the charge transfer, strong hybridization between Mn 4s, 3d, 4p and Si 3s, 3p states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3123805 | DOI Listing |
Phys Chem Chem Phys
July 2015
Department of Chemistry, Quy Nhon University, Quy Nhon, Vietnam.
Mass spectrometry experiments show an exceptionally weak bonding between Si7Mn(+) and rare gas atoms as compared to other exohedrally transition metal (TM) doped silicon clusters and other SinMn(+) (n = 5-10) sizes. The Si7Mn(+) cluster does not form Ar complexes and the observed fraction of Xe complexes is low. The interaction of two cluster series, SinMn(+) (n = 6-10) and Si7TM(+) (TM = Cr, Mn, Cu, and Zn), with Ar and Xe is investigated by density functional theory calculations.
View Article and Find Full Text PDFChemistry
December 2012
Department of Chemistry, KU Leuven, Belgium.
We report on the structural, electronic, and magnetic properties of manganese-doped silicon clusters cations, Si(n)Mn(+) with n=6-10, 12-14, and 16, using mass spectrometry and infrared spectroscopy in combination with density functional theory computations. This combined experimental and theoretical study allows several structures to be identified. All the exohedral Si(n)Mn(+) (n=6-10) clusters are found to be substitutive derivatives of the bare Si(n+1)(+) cations, while the endohedral Si(n)Mn(+) (n=12-14 and 16) clusters adopt fullerene-like structures.
View Article and Find Full Text PDFJ Chem Phys
April 2009
Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China.
The structure, electronic, magnetic properties of Si(n)Mn clusters up to n=15 are systematically investigated using the density functional theory within the generalized gradient approximation. In the most stable configurations of Si(n)Mn clusters, the equilibrium site of Mn atom gradually moves from convex, to a surface, and to a concave site as the number of Si atoms varying from 1 to 15. Starting from n=11, the Mn atom completely falls into the center of the Si outer frame, forming Mn-encapsulated Si cages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!