We consider a system of two coupled Brownian particles fluctuating between two states. The fluctuations are produced by both equilibrium thermal and external nonthermal noise, the transition rates depending on the interparticle distance. An externally induced modulation of the transition rates acts on the internal degree of freedom (the interparticle distance) and generates reciprocating motion along this coordinate. The system moves unidirectionally due to rectification of the internal motion by asymmetric friction fluctuations and thus operates as a dimeric motor that converts input energy into net movement. The properties of the motor are primarily determined by the properties of the reciprocating engine, represented by the interparticle distance dynamics. Two main mechanisms are recognized by which the engine operates: energetic and informational. In the physically important cases where only one of the motion-inducing mechanisms is operative, exact solutions can be found for the model with linearly coupled particles. We focus on the informational mechanism, in which thermal noise is involved as a vital component and the reciprocating velocity exhibits a rich behavior as a function of the model parameters. An efficient rectification method for the reciprocating motion is also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3116790 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!