AI Article Synopsis

  • The study presents a method to create enzyme-responsive surfaces that activate cell adhesive RGD sequences through enzymatic hydrolysis of inactive precursors, allowing for on-demand functionality.
  • These surfaces utilize poly(ethylene glycol) (PEG) monolayers attached to glass, offering a clear and versatile approach to peptide surface preparation using solid phase synthesis techniques.
  • The effectiveness of this method is validated through surface analysis techniques and demonstrated with osteoblast cells, indicating potential applications in tissue engineering and biosensors.

Article Abstract

We report on the design, stepwise synthesis, and surface analysis of enzyme-responsive surfaces that present cell adhesive RGD sequences on-demand, that is, by enzymatic hydrolysis of inactive RGD containing precursors that carry cleavable steric blocking groups. These surfaces, incorporating poly(ethylene glycol) (PEG) monolayers coupled via epoxy silanes to glass, are functionalized via stepwise solid phase synthesis, presenting a versatile and straightforward approach to preparation of peptide surfaces. Successive amino acid coupling and deprotection steps using fluorenylmethoxycarbonyl (Fmoc) chemistry are verified using surface analysis with time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). Exposure of surfaces to elastase results in activation of cell binding ligands as demonstrated using osteoblast cells. These surfaces may have applications in spatiotemporally controlled attachment of cells as relevant for three-dimensional tissue engineering scaffolds and cell-based biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la900376hDOI Listing

Publication Analysis

Top Keywords

surface analysis
12
polyethylene glycol
8
surfaces
5
enzyme-activated rgd
4
rgd ligands
4
ligands functionalized
4
functionalized polyethylene
4
glycol monolayers
4
monolayers surface
4
analysis cellular
4

Similar Publications

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.

Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.

View Article and Find Full Text PDF

In recent decades, global climate change and rapid urbanization have aggravated the urban heat island (UHI) effect, affecting the well-being of urban citizens. Although this significant phenomenon is more pronounced in larger metropolitan areas due to extensive impervious surfaces, small- and medium-sized cities also experience UHI effects, yet research on UHI in these cities is rare, emphasizing the importance of land surface temperature (LST) as a key parameter for studying UHI dynamics. Therefore, this paper focuses on the evaluation of LST and land cover (LC) changes in the city of Prešov, Slovakia, a typical medium-sized European city that has recently undergone significant LC changes.

View Article and Find Full Text PDF

Prognostic value of carcinoembryonic antigen in colorectal adenocarcinoma: expanding hypotheses into clinical practice.

Clin Exp Med

January 2025

Liver & Peritonectomy Unit, Department of Surgery, St George Hospital, Pitney Building, Short Street, Kogarah, NSW, 2217, Australia.

Purpose: This study seeks to resolve a fundamental question in oncology: Why do appendiceal and colorectal adenocarcinomas exhibit distinct liver metastasis rates? Building on our prior hypothesis published in the British Journal of Surgery, our institution has investigated potential DNA mutations within the carcinoembryonic antigen-related cell adhesion molecule (CEACAM5) gene's Pro-Glu-Leu-Pro-Lys (PELPK) motif to evaluate its role as a biomarker for liver metastasis risk.

Methods: Partnering with the Australian Genome Research Facility, the PELPK motif of CEACAM5 was analysed in colorectal and appendiceal adenocarcinomas to detect DNA mutations associated with liver metastasis. Additionally, our institution performed the COPPER trial to assess carcinoembryonic antigen (CEA) levels in portal versus peripheral blood in patients with appendiceal adenocarcinoma and a systematic review and meta-analysis of 136 studies on CEA's prognostic significance among patients with colorectal and appendiceal adenocarcinoma.

View Article and Find Full Text PDF

Fortimicins (FTMs) are fortamine-containing aminoglycoside antibiotics (AGAs) produced by M. olivasterospora DSM 43868 with excellent bactericidal activities against a wide range of Enterobacteriaceae and synergistic activity against multidrug-resistant (MDR) pathogens. Fortimicin-A (FTM-A), the most active member of FTMs, has the lowest susceptibility to inactivation by the aminoglycoside modifying enzymes (AMEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!