Many boronic acids, including 2-heterocyclic, vinyl, and cyclopropyl derivatives, are inherently unstable, which can limit their benchtop storage and/or efficient cross-coupling. We herein report the first general solution to this problem: in situ slow release of unstable boronic acids from the corresponding air-stable MIDA boronates. This remarkably general approach has transformed all three classes of these unstable boronic acids into shelf-stable and highly effective building blocks for cross-coupling with a wide range of aryl and heteroaryl chlorides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309699PMC
http://dx.doi.org/10.1021/ja901416pDOI Listing

Publication Analysis

Top Keywords

boronic acids
16
unstable boronic
12
general solution
8
air-stable mida
8
mida boronates
8
unstable
4
solution unstable
4
boronic
4
acids
4
acids slow-release
4

Similar Publications

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

Heteroaryl-Fused Triazapentalenes: Synthesis and Aggregation-Induced Emission.

Molecules

January 2025

Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.

A pyridine-fused triazapentalene shows weak fluorescence in solution and is readily accessible via nitrene-mediated cyclization. In this study, a modified Cadogan reaction was used to synthesize . Palladium-catalyzed reactions have been used as post-functionalization methods.

View Article and Find Full Text PDF

Silk-engineered bioactive nanoparticles for targeted alleviation of acute inflammatory disease via macrophage reprogramming.

J Nanobiotechnology

January 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China.

Significant progress has been made in the development of potential therapies for diseases associated with inflammation and oxidative stress. Nevertheless, the availability of effective clinical treatments remains limited. Herein, we introduce a novel silk-based bioactive material, TPSF, developed by sequentially conjugating Tempol and phenylboronic acid pinacol ester to silk fibroin.

View Article and Find Full Text PDF

Review of advances in glycan analysis on exosomes, cancer cells, and circulating cancer-derived glycoproteins with an emphasis on electrochemistry.

Anal Chim Acta

January 2025

Department of Biomedical Engineering, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea. Electronic address:

Glycosylation, the intricate process of adding carbohydrate motifs to proteins, lipids, and exosomes on the cell surface, is crucial for both physiological and pathological mechanisms. Alterations in glycans significantly affect cancer cell metastasis by mediating cell-cell and cell-matrix interactions. The subtle changes in glycosylation during malignant transformations highlight the importance of analyzing cell and exosome surface glycosylation for prognostic and early treatment strategies in cancer.

View Article and Find Full Text PDF

Mapping the molecular mechanism of zinc catalyzed Suzuki-Miyaura coupling reaction: a computational study.

Org Biomol Chem

January 2025

Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.

The Suzuki-Miyaura Coupling (SMC) reaction is a powerful method for forming carbon-carbon bonds in organic synthesis. Recent advancements in SMC reactions have introduced first-row transition metal catalysts, with zinc garnering significant interest due to its cost-effective and eco-friendly nature. Despite progress in experimental protocols, the mechanistic details of zinc-catalyzed SMC reactions are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!