Background: Previous studies have shown that axonal outgrowth in the damaged central nervous system is closely related to the local microenvironment. Transplantation of bone marrow stromal cells (BMSC) or BMSC with some biomaterials has been used to treat various central nervous system diseases with some success. In the current study, we investigated if BMSC on denuded human amniotic membrane (DhAM) as a composite matrix could stimulate axonal outgrowth or not.
Method: After completely removing the cells on the amniotic membrane with a tryptic and mechanical approach, we seeded BMSC on it. The MTS was applied to test the cytotoxicity of DhAM compared with PLGA and PLL. The morphology of the BMSC was observed by light, electronic and laser confocal microscopy. We also used four kinds of substance (PLL, DhAM, BMSC + PLL, BMSC + DhAM) to coculturing with the cortical neurons. Finally, the lengths of axons in each group were studied using the positive axon-specific marker NF-H.
Findings: The DhAM was devoid of cellular components and only its intact basement membrane was left. BMSC grew on the substrate and proliferated with a flat to fusiform morphology. In the MTS test, the results indicated that BMSC cultured in DhAM extract had a high survival rate (> 80%). Moreover, the cortical neural axons in the experimental group (BMSC + DhAM) were longer (287.37 +/- 12.72 microm) than in the other groups (P < 0.01).
Conclusions: This study demonstrates that the DhAM was a good carrier to support growth of BMSC and BMSC on DhAM was an effective composite matrix to support the outgrowth of the axons of rat cortical neurons in vitro. Future studies of the use of the composite matrix in disorders are planned.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00701-009-0322-5 | DOI Listing |
Ann Biomed Eng
January 2025
School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.
Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.
Sci Rep
January 2025
Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.
Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China. Electronic address:
The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.
View Article and Find Full Text PDFMol Cell Proteomics
January 2025
Department of Molecular Biology, Princeton University; Princeton, NJ USA 08544. Electronic address:
Intercellular communication is fundamental to multicellular life and a core determinant of outcomes during viral infection, where the common goals of virus and host for persistence and replication are generally at odds. Hosts rely on encoded innate and adaptive immune responses to detect and clear viral pathogens, while viruses can exploit or disrupt these pathways and other intercellular communication processes to enhance their spread and promote pathogenesis. While virus-induced signaling can result in systemic changes to the host, striking alterations are observed within the cellular microenvironment directly surrounding a site of infection, termed the virus microenvironment (VME).
View Article and Find Full Text PDFFood Chem
January 2025
Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, Changchun, Jilin 130118, China; College of Horticulture, Jilin Agricultural University, Changchun, Jilin 130118, China. Electronic address:
Blueberries are the most popular small berries, in order to solve the problem of unbalanced blueberry resources in different regions of China. In this study, 18 blueberries were analyzed by chromatography and mass spectrometry for 9 soil elements, 6 anthocyanins, 7 phenolic acids, 9 organic acids, and 12 flavonoids. The result showed that blueberry physico-chemical indicators were significantly variable across production regions by Wenn and volcano maps, chlorogenic acid, ascorbic acid, citric acid, catechin were the main antioxidant active components, soil pH was significantly correlated with low content of anthocyanins and organic acids, soil elements were not significantly correlated with fruits antioxidant activity by the network correlation analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!