An investigation of the neural correlates of attention and effector switching using ERPs.

Cogn Affect Behav Neurosci

Department of Psychology, Iowa State University, Ames, Iowa 50011, USA.

Published: June 2009

AI Article Synopsis

Article Abstract

Event-related brain potentials (ERPs) were used to examine the neural correlates of attention and effector switching when one or both types of switches were performed on a given trial. The response time data revealed that switch costs tended to increase from attention switches to effector switches to attention+effector switches. For right-hand responses, attention switching was associated with a parietal slow wave and effector switching was associated with a central readiness potential. For left-hand responses, attention switching was associated with a parietal slow wave, and effector switching was associated with a parietal slow wave and a readiness potential. These data suggest that the independence of the neural systems supporting attention and effector switching may be limited to instances where the dominant hemisphere controls the response.

Download full-text PDF

Source
http://dx.doi.org/10.3758/CABN.9.2.190DOI Listing

Publication Analysis

Top Keywords

effector switching
20
switching associated
16
attention effector
12
associated parietal
12
parietal slow
12
slow wave
12
neural correlates
8
correlates attention
8
responses attention
8
attention switching
8

Similar Publications

The small GTPase MRAS is a broken switch.

Nat Commun

January 2025

Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada.

Intense research on founding members of the RAS superfamily has defined our understanding of these critical signalling proteins, leading to the premise that small GTPases function as molecular switches dependent on differential nucleotide loading. The closest homologs of H/K/NRAS are the three-member RRAS family, and interest in the MRAS GTPase as a regulator of MAPK activity has recently intensified. We show here that MRAS does not function as a classical switch and is unable to exchange GDP-to-GTP in solution or when tethered to a lipid bilayer.

View Article and Find Full Text PDF

Unlabelled: SHP1 (PTPN6) and SHP2 (PTPN11) are closely related protein-tyrosine phosphatases (PTPs), which are autoinhibited until their SH2 domains bind paired tyrosine-phosphorylated immunoreceptor tyrosine-based inhibitory/switch motifs (ITIMs/ITSMs). These PTPs bind overlapping sets of ITIM/ITSM-bearing proteins, suggesting that they might have some redundant functions. By studying T cell-specific single and double knockout mice, we found that SHP1 and SHP2 redundantly restrain naïve T cell differentiation to effector and central memory phenotypes, with SHP1 playing the dominant role.

View Article and Find Full Text PDF

Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.

View Article and Find Full Text PDF
Article Synopsis
  • Cirrhotic cardiomyopathy is characterized by both systolic and diastolic dysfunction in patients with cirrhosis, resulting from abnormalities in heart muscle cells (cardiomyocytes) without any underlying heart disease.
  • Changes at the cellular level include altered membrane fluidity and dysfunctional receptors (like beta-adrenergic), as well as issues with calcium and ion transport processes, impacting overall heart function.
  • The heart in cirrhotic patients also undergoes fibrotic changes similar to those in the liver, leading to stiffness and further dysfunction, compounded by excessive cell death of cardiomyocytes.
View Article and Find Full Text PDF

Virulence of many gram-negative bacteria relies upon delivery of type three effectors into host cells. To pass through the conduit of secretion machinery the effectors need to acquire an extended conformation, and in many bacterial species specific chaperones assist in this process. In plant pathogenic bacterium Pseudomonas syringae, secretion of only few effectors requires the function of chaperones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!