The optimal medium for butyric acid production by Clostridium thermobutyricum in a shake flask culture was studied using statistical experimental design and analysis. The optimal composition of the fermentation medium for maximum butyric acid yield, as determined on the basis of a three-level four-factor Box-Behnken design (BBD), was obtained by response surface methodology (RSM). The high correlation between the predicted and observed values indicated the validity of the model. A maximum butyric acid yield of 12.05 g/l was obtained at K(2)HPO(4) 7.2 g/l, 34.9 g/l glucose, 20 g/l yeast extract, and 15 g/l acetate, which compared well to the predicated production of 12.13 g/l.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2009.03.022DOI Listing

Publication Analysis

Top Keywords

butyric acid
16
acid production
8
production clostridium
8
clostridium thermobutyricum
8
response surface
8
surface methodology
8
maximum butyric
8
acid yield
8
g/l
6
optimization medium
4

Similar Publications

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a highly prevalent liver pathology in need of novel pharmacological treatments to complement lifestyle-based interventions. Nuclear receptor agonists have been under scrutiny as potential pharmacological targets and as of today, resmetirom, a thyroid hormone receptor b agonist, is the only approved agent. The dual PPAR α and δ agonist elafibranor has also undergone extensive clinical testing, which reached the phase III clinical trial but failed to demonstrate a beneficial effect on MASLD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a degenerative neurological disorder defined by the formation of β-amyloid (Aβ) plaques and neurofibrillary tangles within the brain. Current pharmacological treatments for AD only provide symptomatic relief, and there is a lack of definitive disease-modifying therapies. Chemical chaperones, such as 4-Phenylbutyric acid (4PBA) and Tauroursodeoxycholic acid, have shown neuroprotective effects in animal and cell culture models.

View Article and Find Full Text PDF

Background: : The metabolic by-product butyric acid of Gram-negative anaerobic bacteria can invoke pathological effects on periodontal cells resulting in inflammation and further destruction of periodontium. However, limited researches on the effects of butyric acid on cementoblasts were reported. Therefore, this study aimed to investigate the type of cell death in murine cementoblast (OCCM.

View Article and Find Full Text PDF

Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.

View Article and Find Full Text PDF

GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!