Background: Cell size is a structural component of fleshy fruit, contributing to important traits such as fruit size and texture. There are currently a number of methods for measuring cell size; most rely either on tissue sectioning or digestion of the tissue with cell wall degrading enzymes or chemicals to release single cells. Neither of these approaches is ideal for assaying large fruit numbers as both require a considerable time to prepare the tissue, with current methods of cell wall digestions taking 24 to 48 hours. Additionally, sectioning can lead to a measurement of a plane that does not represent the widest point of the cell.

Results: To develop a more rapid way of measuring fruit cell size we have developed a protocol that solubilises pectin in the middle lamella of the plant cell wall releasing single cells into a buffered solution. Gently boiling small fruit samples in a 0.05 M Na2CO3 solution, osmotically balanced with 0.3 M mannitol, produced good cell separation with little cellular damage in less than 30 minutes. The advantage of combining a chemical treatment with boiling is that the cells are rapidly killed. This stopped cell shape changes that could potentially occur during separation. With this method both the rounded and angular cells of the apple cultivars SciRos 'Pacific Rose' and SciFresh 'Jazz' were observed in the separated cells. Using this technique, an in-depth analysis was performed measuring cell size from 5 different apple cultivars. Cell size was measured using the public domain ImageJ software. For each cultivar a minimum of 1000 cells were measured and it was found that each cultivar displayed a different distribution of cell size. Cell size within cultivars was similar and there was no correlation between flesh firmness and cell size. This protocol was tested on tissue from other fleshy fruit including tomato, rock melon and kiwifruit. It was found that good cell separation was achieved with flesh tissue from all these fruit types, showing a broad utility to this protocol.

Conclusion: We have developed a method for isolating single cells from fleshy fruit that reduces the time needed for fruit cell separation. This method was used to demonstrate differences in cell size and shape for 5 different apple cultivars. While firmness between the different cultivars is independent of cell size, apples with more angular cells appear to be firmer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685799PMC
http://dx.doi.org/10.1186/1746-4811-5-5DOI Listing

Publication Analysis

Top Keywords

cell size
44
cell
19
fruit cell
12
size
12
fleshy fruit
12
cell wall
12
single cells
12
cell separation
12
apple cultivars
12
fruit
10

Similar Publications

Study Question: How can we best achieve tissue segmentation and cell counting of multichannel-stained endometriosis sections to understand tissue composition?

Summary Answer: A combination of a machine learning-based tissue analysis software for tissue segmentation and a deep learning-based algorithm for segmentation-independent cell identification shows strong performance on the automated histological analysis of endometriosis sections.

What Is Known Already: Endometriosis is characterized by the complex interplay of various cell types and exhibits great variation between patients and endometriosis subtypes.

Study Design, Size, Duration: Endometriosis tissue samples of eight patients of different subtypes were obtained during surgery.

View Article and Find Full Text PDF

Development of a multi-scale nanofiber scaffold platform for structurally and functionally replicated artificial perforating arteries.

Bioprocess Biosyst Eng

December 2024

Department of Biological Engineering, Inha University, 100 Inha-Ro, Nam-Gu, Incheon, 22212, Republic of Korea.

Experimental models for exploring abnormal brain blood vessels, including ischemic stroke, are crucial in neuroscience; recently, significant attention has been paid to artificial tissues through tissue engineering. Nanofibers, although commonly used as tissue engineering scaffolds, undergo structural deformations easily, making it challenging to create uniform tissue, especially for the smallest-diameter ones such as perforating arteries. This study focused on the development of a platform capable of reconstructing structurally and functionally replicated perforating arteries.

View Article and Find Full Text PDF

Advances in the Development of Auricular Cartilage Bioimplants.

Tissue Eng Part B Rev

December 2024

Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico.

Conditions such as congenital abnormalities, cancer, infections, and trauma can severely impact the integrity of the auricular cartilage, resulting in the need for a replacement structure. Current implants, carved from the patient's rib, involve multiple surgeries and carry risks of adverse events such as contamination, rejection, and reabsorption. Tissue engineering aims to develop lifelong auricular bioimplants using different methods, different cell types, growth factors and maintenance media formulations, and scaffolding materials compatible with the host.

View Article and Find Full Text PDF

The goal of this study is to assess the potential advantages of utilising methotrexate (MTH), and mangiferin (MFR), in nanoparticulate configuration which could result in increased stability and solubility, as well as improved infiltration into the arthritic tissues under investigation. The synthesised MTH-MFR-TRS demonstrated a particle size of 151.7 nm and a PDI of 0.

View Article and Find Full Text PDF

Naked siRNAs are sensitive to enzymatic degradation, phagocytic entrapment, quick renal excretion, membrane impermeability, endosomal escape, and off-target effects. Designing a safe and efficient nanocarrier for siRNA delivery to the target site without toxicity remains a significant hurdle in gene therapy. CA is a unique derivative of hydroxyapatite and a highly pH-sensitive nanocarrier with strong particle aggregation and a high polydispersity index.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!