In this study we present a combined crystallographic and computational study of a new polymorph of N,N'-dimethylurea (DMU) with P2(1)2(1)2 space group symmetry, along with a revised theoretical study of the previously known phase in its corrected space group (Fdd2). X-ray diffraction studies show crystal structures that are very similar, differing only in the relative orientation of the hydrogen-bonded molecular chains that are common to both phases. The vibrational spectra were obtained from B3LYP hybrid functional lattice dynamics calculations and compared with the experimental data for the known phase. The free-energy difference between the forms is derived from the Gamma-point optical mode frequencies, and amounts to less than 1 kJ mol(-1) across the temperature range of interest. The electronic densities-of-states of both phases are also computed, yielding only marginal differences in valence and conduction band compositions and band gap widths. Taken together, the results highlight the small but important differences separating the two crystal lattices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp900141qDOI Listing

Publication Analysis

Top Keywords

polymorph nn'-dimethylurea
8
x-ray diffraction
8
lattice dynamics
8
dynamics calculations
8
space group
8
nn'-dimethylurea characterized
4
characterized x-ray
4
diffraction first-principles
4
first-principles lattice
4
calculations study
4

Similar Publications

Acute pancreatitis (AP) is a highly fatal pancreatic inflammation. In recent years, synthetic nanoparticles have been extensively developed as drug carriers to address the challenges of systemic adverse reactions and lack of specificity in drug delivery. However, systemically administered nanoparticle therapy is rapidly cleared from circulation by the mononuclear phagocyte system (MPS), leading to suboptimal drug concentrations in inflamed tissues and suboptimal pharmacokinetics.

View Article and Find Full Text PDF

Background: The persistently high mortality and morbidity rates of hepatocellular carcinoma (HCC) remain a global concern. Notably, the disruptions in mitochondrial cholesterol metabolism (MCM) play a pivotal role in the progression and development of HCC, underscoring the significance of this metabolic pathway in the disease's etiology. The purpose of this research was to investigate genes associated with MCM and develop a model for predicting the prognostic features of patients with HCC.

View Article and Find Full Text PDF

Background: Within the realm of primary brain tumors, specifically glioblastoma (GBM), presents a notable obstacle due to their unfavorable prognosis and differing median survival rates contingent upon tumor grade and subtype. Despite a plethora of research connecting cardiotrophin-1 (CTF1) modifications to a range of illnesses, its correlation with glioma remains uncertain. This study investigated the clinical value of CTF1 in glioma and its potential as a biomarker of the disease.

View Article and Find Full Text PDF

Abnormalities in gene expression profiles characterize patients with inflammatory skin diseases, including psoriasis, and changes may reflect the action of specific therapeutic agents. To examine this, gene expression analysis of psoriatic skin was assessed by Gene Set Variation Analysis using informative gene modules, and longitudinal data were analyzed to assess the impact of various treatments. Ridge penalized logistic regression was employed to derive a transcriptomic score.

View Article and Find Full Text PDF

A Facile Approach To Develop Ion Pair Micelles Satellited Freshly Derived Neutrophils For Targeted Tumor Therapy.

Adv Healthc Mater

January 2025

Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.

Immune cells show enormous potential for targeted nanoparticle delivery due to their intrinsic tumor-homing skills. However, the immune cells can internalize the nanoparticles, leading to cellular functional impairments, degradation of the nanoparticles, and delayed release of drugs from the immune cells. To address these issues, this study introduces an approach for the synthesis of freshly derived neutrophils (NUs)-based nanocarriers system where the NUs are surfaced by dialdehyde alginate-coated self-assembled micelles loaded with mitoxantrone (MIT) and indocyanine green (ICG) (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!