Indoleamine 2,3-dioxygenase (IDO1) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the first step in tryptophan catabolism via the kynurenine pathway. TDO is widely distributed in both eukaryotes and bacteria. In contrast, IDO has been found only in mammals and yeast. In 2007, a third enzyme, indoleamine 2,3-dioxygenase-2 (IDO2), was discovered. IDO2 is found not only in mammals but also in lower vertebrates. Interestingly, the Km value of IDO2 for L-Trp was 500-1000 fold higher than that of IDO1. In this study, we isolated both IDO1 and IDO2 cDNA from a monotreme, the platypus (Ornithorhynchus anatinus), and a marsupial, the gray short-tailed opossum (Monodelphis domestica). We characterized the recombinant proteins and those of other known IDO1/IDO2 in intact cells and a cell-free system. It was found that methylene blue may not be suitable reductant for IDO2, hence resulting in an underestimation of recombinant IDO2 activity. In intact cells, the Km value of IDO2 for L-Trp was estimated to be much higher than that of IDO1 and this high Km value appears to have been conserved during the evolution of IDO2. The protein encoded by the ancestor gene of IDO1 and IDO2 is likely to have had properties more similar to present day IDO2 than to IDO1.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ido2
10
ido2 l-trp
8
higher ido1
8
ido1 ido2
8
intact cells
8
ido1
6
characterization evolution
4
evolution vertebrate
4
vertebrate indoleamine
4
indoleamine 3-dioxygenases
4

Similar Publications

Alzheimer's disease-specific transcriptomic and epigenomic changes in the tryptophan catabolic pathway.

Alzheimers Res Ther

November 2024

Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences (FHML), Mental Health and Neuroscience Research Institute (MHeNs) and European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6211 LK, the Netherlands.

Background: Neurodegenerative disorders, including Alzheimer's disease (AD), have been linked to alterations in tryptophan (TRP) metabolism. However, no studies to date have systematically explored changes in the TRP pathway at both transcriptional and epigenetic levels. This study aimed to investigate transcriptomic, DNA methylomic (5mC) and hydroxymethylomic (5hmC) changes within genes involved in the TRP and nicotinamide adenine dinucleotide (NAD) pathways in AD, using three independent cohorts.

View Article and Find Full Text PDF
Article Synopsis
  • Substance use disorder (SUD) is a major public health issue in the U.S., linked to rising overdose deaths and prescription drug misuse, highlighting the need to explore its molecular and genetic roots.
  • The study utilized the All of Us cohort to analyze genetic variants in four genes related to the kynurenine pathway across six groups, including various types of substance use disorders.
  • Results indicated significant genetic variations in 14 out of 18 polymorphisms, with the cocaine group showing the highest number of significant variants, suggesting possible genetic predictors for increased susceptibility to SUD.
View Article and Find Full Text PDF

The Two Sides of Indoleamine 2,3-Dioxygenase 2 (IDO2).

Cells

November 2024

Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy.

Indoleamine 2,3-dioxygenase 1 () and originated from gene duplication before vertebrate divergence. While IDO1 has a well-defined role in immune regulation, the biological role of IDO2 remains unclear. Discovered in 2007, is located near the gene.

View Article and Find Full Text PDF

Gene expression of kynurenine pathway enzymes in depression and following electroconvulsive therapy.

Acta Neuropsychiatr

October 2024

Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland.

Article Synopsis
  • This study explored how the expression of kynurenine pathway (KP) enzymes in the blood is affected in patients with depression compared to healthy controls and post-electroconvulsive therapy (ECT).
  • Results showed that certain KP enzymes were lower in patients with depression, but these findings weren’t statistically significant after accounting for other factors; ECT didn't change KP enzyme expression.
  • The study suggests that further research is needed to see if KP measures can effectively help in diagnosing depression and predicting responses to antidepressant treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!