Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent studies have shown that Toll-like receptors (TLRs) are involved in cerebral ischemia/reperfusion (I/R) injury. This study was to investigate the role of TLR2 and TLR4 in acute focal cerebral I/R injury. Cerebral infarct size, neurological function and mortality were evaluated. NFsmall ka, CyrillicB binding activity, phosphorylation of Ismall ka, CyrillicBalpha, Akt and ERK1/2 were examined in ischemic cerebral tissue by EMSA and Western blots. Compared to wild type (WT) mice, in TLR4 knockout (TLR4KO) mice, brain infarct size was decreased (2.6+/-1.18% vs 11.6+/-1.97% of whole cerebral volume, p<0.05) and neurological function was maintained (7.3+/-0.79 vs 4.7+/-0.68, p<0.05). However, compared to TLR4KO mice, TLR2 knockout (TLR2KO) mice showed higher mortality (38.2% vs 13.0%, p<0.05), decreased neurological function (2.9+/-0.53 vs 7.3+/-0.79, p<0.05) and increased brain infarct size (19.1+/-1.33% vs 2.6+/-1.18%, p<0.05). NFsmall ka, CyrillicB activation and Ismall ka, CyrillicBalpha phosphorylation were attenuated in TLR4KO mice (1.09+/-0.02 and 1.2+/-0.04) compared to TLR2KO mice (1.31+/-0.02 and 2.2+/-0.32) after cerebral ischemia. Compared to TLR4KO mice, in TLR2KO mice, the phosphorylation of Akt (0.2+/-0.03 vs 0.9+/-0.16, p<0.05) and ERK1/2 (0.8+/-0.06 vs 1.3+/-0.17) evoked by cerebral I/R was attenuated. The present study demonstrates that TLR2 and TLR4 play differential roles in acute cerebral I/R injury. Specifically, TLR4 contributes to cerebral I/R injury, while TLR2 appears to be neuroprotective by enhancing the activation of protective signaling in response to cerebral I/R.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722683 | PMC |
http://dx.doi.org/10.1016/j.brainres.2009.01.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!