A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Blue light emitting Ir(III) compounds for OLEDs - new insights into ancillary ligand effects on the emitting triplet state. | LitMetric

The sky-blue emitting phosphorescent compound Ir(4,6-dFppy)(2)(acac) (FIracac) doped into different matrices is studied under ambient conditions and at cryogenic temperatures on the basis of broadband and high-resolution emission spectra. The emitting triplet state is found to be largely of metal-to-ligand charge transfer (MLCT) character. It is observed that different polycrystalline and amorphous hosts distinctly affect the properties of the triplet. Moreover, a comparison of FIracac with the related Ir(4,6-dFppy)(2)(pic) (FIrpic), differing only by the ancillary ligand, reveals obvious changes of properties of the emitting state. These observations are explained by different effects of acac and pic on the Ir(III) d-orbitals. In particular, the occupied frontier orbitals, strongly involving the t(2g)-manifold, and their splitting patterns are modified differently. This influences spin-orbit coupling (SOC) of the emitting triplet state to higher-lying (1,3)MLCT states. As a consequence, zero-field splittings, radiative decay rates, and phosphorescence quantum yields are changed. The important effects of SOC are discussed qualitatively and are related to the emission properties of the individual triplet substates, as determined from highly resolved spectra. The results allow us to gain a better understanding of the impact of SOC on the emission properties with the aim to develop more efficient triplet emitters for OLEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp902261cDOI Listing

Publication Analysis

Top Keywords

emitting triplet
12
triplet state
12
ancillary ligand
8
emission properties
8
emitting
6
triplet
6
blue light
4
light emitting
4
emitting iriii
4
iriii compounds
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!