Background: Interactions between prostate cancer cells and their surrounding stroma play an important role in the growth and maintenance of prostate tumors. To elucidate this further, we investigated how growth of androgen-dependent (AD) LNCaP and androgen-independent (AI) LNCaP-19 prostate tumors was affected by different microenvironments and androgen levels.

Methods: Tumor cells were implanted subcutaneously and orthotopically in intact and castrated immunodeficient mice. Orthotopic tumor growth was followed by magnetic resonance imaging (MRI). Gene expression in the tumors was evaluated by means of microarray analysis and microvessel density (MVD) was analyzed using immunohistochemistry.

Results: The results showed that LNCaP-19 tumors grew more rapidly at the subcutaneous site than in the prostate, where tumors were obviously inhibited. Castration of the mice did not affect ectopic tumors but did result in increased tumor growth in the prostatic environment. This effect was reversed by testosterone treatment. In contrast to LNCaP-19, the LNCaP cells grew rapidly in the prostate and castration reduced tumor development. Gene expression analysis of LNCaP-19 tumors revealed an upregulation of genes, inhibiting tumor growth (including ADAMTS1, RGS2 and protocadherin 20) and a downregulation of genes, promoting cell adhesion and metastasis (including N-cadherin and NRCAM) in the slow-growing orthotopic tumors from intact mice.

Conclusions: The results show that the prostatic environment has a varying impact on AD and AI tumor xenografts. Data indicate that the androgen-stimulated prostatic environment limits growth of orthotopic AI tumors through induction of genes that inhibit tumor growth and suppression of genes that promote cell adhesion and metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.20965DOI Listing

Publication Analysis

Top Keywords

prostatic environment
16
tumor growth
16
prostate tumors
12
tumors
9
growth
8
prostate cancer
8
gene expression
8
lncap-19 tumors
8
grew rapidly
8
cell adhesion
8

Similar Publications

Unlabelled: Biomolecular condensates organize cellular environments and regulate key processes such as transcription. We previously showed that full-length androgen receptor (AR-FL), a major oncogenic driver in prostate cancer (PCa), forms nuclear condensates upon androgen stimulation in androgen-sensitive PCa cells. Disrupting these condensates impairs AR-FL transcriptional activity, highlighting their functional importance.

View Article and Find Full Text PDF

Tissue specimens taken from primary tumors or metastases contain important information for diagnosis and treatment of cancer patients. Multiplex imaging allows visualization of heterogeneous cell populations, such as immune cells, in tissue samples. Most image processing pipelines first segment cell boundaries and then measure marker expression to assign cell phenotypes.

View Article and Find Full Text PDF

Objectives: Communication barriers, such as channels, comfort, and location, can negatively impact Black prostate cancer survivors' experiences and health outcomes after treatment. Addressing these barriers promotes a survivor-centric approach that views survivors as active partners in their care. This study explored the communication preferences of Black prostate cancer survivors, focusing on preferred channels, sources, and locations for enhanced quality of life.

View Article and Find Full Text PDF

Prostate cancer is a common malignancy that in 5%-30% leads to treatment-resistant and highly aggressive disease. Metastasis-potential and treatment-resistance is thought to rely on increased plasticity of the cancer cells-a mechanism whereby cancer cells alter their identity to adapt to changing environments or therapeutic pressures to create cellular heterogeneity. To understand the molecular basis of this plasticity, genomic studies have uncovered genetic variants to capture clonal heterogeneity of primary tumors and metastases.

View Article and Find Full Text PDF

Obesity, dietary interventions and microbiome alterations in the development and progression of prostate cancer.

Front Immunol

January 2025

Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin and Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, United States.

Purpose Of Review: The role of the microbiome in prostate cancer is an emerging subject of research interest. Certain lifestyle factors, such as obesity and diet, can also impact the microbiome, which has been implicated in many diseases, such as heart disease and diabetes. However, this link has yet to be explored in detail in the context of prostate cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!