Pedicle screw fixation enables enhanced three-dimensional correction of spinal deformities and effectively shortens the distal fusion level. However, the choice of distal fusion level is still controversial in single thoracic idiopathic scoliosis with the lumbar compensatory curve not crossing the middle line (Lenke type 1 with modifier A or King type III and IV curves).The authors retrospectively analyzed 31 patients treated by segmental pedicular instrumentation alone, affected by a single thoracic adolescent idiopathic scoliosis with a compensatory lumbar curve not crossing the midline (Lenke 1A), with an average age of 16.3 years (range 10-22 years). The patients with regard to the King classification were also assessed. A statistical analysis was performed to determine whether the two groups (King III, King IV) presented differences concerning the level of the stable vertebra (SV), end vertebra (EV), and neutral vertebra (NV) and were also analyzed the results at follow-up regarding the relationships between the SV, EV, and lowest instrumented vertebra (LIV). The statistical analysis showed a significant difference between the two curve types. In the King III type curve the SV, EV, and NV appeared to be more proximal than those of the King IV type curve and the segments between the SV, EV, and NV appeared to be reduced in King III curves compared with King IV curves. At a follow-up of 3.2 years (range 2.2-5) the thoracic curve showed a correction of 58.4% (from 62.3 degrees to 26.6 degrees ) and compensatory lumbar curve an average spontaneous correction of 52.4% (from 38.1 degrees to 18.1 degrees ).The position of the LIV was shorter than the position of the SV in 30 patients (97%) with an average "salvage" of 2.1 (from 1 to 4) distal fusion levels. Four cases (13%), all affected by a King IV type curve, presented at follow-up an unsatisfactory results due to an "adding on" phenomenon. The statistical analysis confirmed that this phenomenon was correlated with The King IV curve (P = 0.043; Chi-square test) and that the only predictive parameter for its onset was the LIV-SV difference (odds ratio = 0.093; with a confidence interval of 0.008-1): every time that in King IV curve type the LIV was three or more levels shorter than the stable vertebra at follow-up the "adding on" phenomenon was present. The authors conclude that Lenke's type 1 with modifier A includes two kinds of curves, King III and King IV and that the Lenke's type 2 curves and King V with the lumbar curve not crossing the middle line have a similar behavior. Therefore, it is of authors' opinion that "the adding on phenomenon" could be prevented by more rigidly defining K. IV versus K. III curves. In Lenke's 1/2 A-K. IV/V type with the rotation of the first vertebra just below the thoracic lower EV in the same direction as the thoracic curve, and when SV and EV show more than two levels of difference, it is necessary to extend the lower fusion down to L2 or L3 (not more than two levels shorter than the SV). Whereas in Lenke's 1/2 A-K. III/V with the rotation of the first proximal vertebra of lumbar curve in the opposite direction to the thoracic apex and when SV and EV show not more than two level gap differences, the position of the lowest instrumented vertebra can be two or three levels shorter than the stable vertebra with satisfactory postoperative spinal balance. Therefore, the stable vertebra and the rotation of lumbar curve are considered to be a reliable guide for selecting the lower level of fusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899602 | PMC |
http://dx.doi.org/10.1007/s00586-009-0990-0 | DOI Listing |
Circ Cardiovasc Interv
June 2022
Department of Cardiology' Mount Sinai St. Luke's Hospital, New York (P.R., J.T.-H.).
Background: Intravascular ultrasound (IVUS) has several benefits during percutaneous coronary interventions (PCIs), including more accurate vessel sizing, improved stent expansion, and better strut apposition. Prior clinical trials have demonstrated a reduction in cardiac events when IVUS is used. However, there is limited information about the utilization of IVUS and the outcomes of IVUS-guided versus angiography-guided PCI in patients with complex lesions in a contemporary population-based setting.
View Article and Find Full Text PDFEuroIntervention
March 2022
Emory University School of Medicine, Atlanta, GA, USA.
J Am Coll Cardiol
July 2021
Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Over the last 4 decades, percutaneous coronary intervention has evolved dramatically and is now an acceptable treatment option for patients with advanced coronary artery disease. However, trialists have struggled to establish the respective roles for percutaneous coronary intervention and coronary artery bypass graft surgery, especially in patients with multivessel disease and unprotected left-main stem coronary artery disease. Several pivotal trials and meta-analyses comparing these 2 revascularization strategies have enabled the relative merits of each technique to be established with regard to the type of ischemic syndrome, the coronary anatomy, and the patient's overall comorbidity.
View Article and Find Full Text PDFJ Geriatr Cardiol
March 2021
Emory Health System, Atlanta, GA, USA.
Objective: Hybrid coronary revascularization (HCR) combines a minimally invasive surgical approach to the left anterior descending (LAD) artery with percutaneous coronary intervention (PCI) for non-LAD diseased coronary arteries. It is associated with shorter hospital lengths of stay and recovery times than conventional coronary artery bypass surgery, but there is little information comparing it to isolated PCI for multivessel disease. Our objective is to compare long-term outcomes of HCR and PCI for patients with multivessel disease.
View Article and Find Full Text PDFEuroIntervention
December 2020
Andreas Gruentzig Cardiovascular Center, Emory University School of Medicine, Atlanta, GA, USA.
Aims: The Absorb bioresorbable vascular scaffold (BVS) has high rates of target lesion failure (TLF) at three years. Low wall shear stress (WSS) promotes several mechanisms related to device TLF. We investigated the impact of BVS compared to XIENCE V (XV) on coronary WSS after device deployment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!