The intensity-modulated radiation therapy (IMRT) planning strategies for nasopharyngeal cancer among Korean radiation oncology facilities were investigated. Five institutions with IMRT planning capacity using the same planning system were invited to participate in this study. The institutions were requested to produce the best plan possible for 2 cases that would deliver 70 Gy to the planning target volume of gross tumor (PTV1), 59.4 Gy to the PTV2, and 51.5 Gy to the PTV3 in which elective irradiation was required. The advised fractionation number was 33. The planning parameters, resultant dose distributions, and biological indices were compared. We found 2-3-fold variations in the volume of treatment targets. Similar degree of variation was found in the delineation of normal tissue. The physician-related factors in IMRT planning had more influence on the plan quality. The inhomogeneity index of PTV dose ranged from 4 to 49% in Case 1, and from 5 to 46% in Case 2. Variation in tumor control probabilities for the primary lesion and involved LNs was less marked. Normal tissue complication probabilities for parotid glands and skin showed marked variation. Results from this study suggest that greater efforts in providing training and continuing education in terms of IMRT planning parameters usually set by physician are necessary for the successful implementation of IMRT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2672124PMC
http://dx.doi.org/10.3346/jkms.2009.24.2.248DOI Listing

Publication Analysis

Top Keywords

imrt planning
20
planning
9
radiation therapy
8
therapy imrt
8
planning strategies
8
nasopharyngeal cancer
8
planning parameters
8
normal tissue
8
imrt
6
multi-institutional comparison
4

Similar Publications

We assessed the effect of beam size on plan robustness for intensity-modulated proton therapy (IMPT) of head and neck cancer (HNC) and compared the plan quality including robustness with that of intensity-modulated radiation therapy (IMRT). IMPT plans were generated for six HNC patients using six beam sizes (air-sigma 3-17 mm at isocenter for a 70-230 MeV) and two optimization methods for planning target volume-based non-robust optimization (NRO) and clinical target volume (CTV)-based robust optimization (RO). Worst-case dosimetric parameters and plan robustness for CTV and organs-at-risk (OARs) were assessed under different scenarios, assuming a ± 1-5 mm setup error and a ± 3% range error.

View Article and Find Full Text PDF

Purpose: This systematic review aimed to assess the feasibility, safety, and efficacy of using modern external beam radiotherapy (EBRT) techniques, such as intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic body radiotherapy (SBRT) as alternative approaches to brachytherapy (BRT) in adjuvant treatment of endometrial cancer (EC).

Material And Methods: A systematic review was conducted following PRISMA guidelines. The research question was framed using the PICO method, focusing on patients with EC [P] and comparing modern EBRT techniques (IMRT, VMAT, SBRT) [I] vs.

View Article and Find Full Text PDF

Background: Modern radiation therapy techniques, such as intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT), use complex fluence modulation strategies to achieve optimal patient dose distribution. Ensuring their accuracy necessitates rigorous patient-specific quality assurance (PSQA), traditionally done through pretreatment measurements with detector arrays. While effective, these methods are labor-intensive and time-consuming.

View Article and Find Full Text PDF

Tumor hypoxia significantly impacts the efficacy of radiotherapy. Recent developments in the technique of dose painting by numbers (DPBN) promise to improve the tumor control probability (TCP) in conventional radiotherapy for hypoxic cancer. The study initially combined the DPBN method with hypoxia-guided dose distribution optimization to overcome hypoxia for lung cancers and evaluated the effectiveness and appropriateness for clinical use of the DPBN plans.

View Article and Find Full Text PDF

Purpose: This study introduced a novel 3D dosimetry system for radiotherapy in order to address the limitations of traditional quality assurance methods in precision radiotherapy techniques.

Methods: The research required the use of scintillation material, optical measurements, and a dose reconstruction algorithm. The scintillation material, which mimics human soft tissue characteristics, served as a both physical phantom and a radiation detector.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!