Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Information extraction (IE) systems have been proposed in recent years to extract genic interactions from bibliographical resources. They are limited to single interaction relations, and have to face a trade-off between recall and precision, by focusing either on specific interactions (for precision), or general and unspecified interactions of biological entities (for recall). Yet, biologists need to process more complex data from literature, in order to study biological pathways. An ontology is an adequate formal representation to model this sophisticated knowledge. However, the tight integration of IE systems and ontologies is still a current research issue, a fortiori with complex ones that go beyond hierarchies.
Method: We propose a rich modeling of genic interactions with an ontology, and show how it can be used within an IE system. The ontology is seen as a language specifying a normalized representation of text. First, IE is performed by extracting instances from natural language processing (NLP) modules. Then, deductive inferences on the ontology language are completed, and new instances are derived from previously extracted ones. Inference rules are learnt with an inductive logic programming (ILP) algorithm, using the ontology as the hypothesis language, and its instantiation on an annotated corpus as the example language. Learning is set in a multi-class setting to deal with the multiple ontological relations.
Results: We validated our approach on an annotated corpus of gene transcription regulations in the Bacillus subtilis bacterium. We reach a global recall of 89.3% and a precision of 89.6%, with high scores for the ten semantic relations defined in the ontology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmedinf.2009.03.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!