RF pulses for in vivo spectroscopy at high field designed under conditions of limited power using optimal control.

J Magn Reson

Center for Imaging of Neurodegenerative Diseases (114M), Department of Veterans Affairs Medical Center, University of California, 4150 Clement Street, San Francisco, CA 94121, USA.

Published: July 2009

AI Article Synopsis

Article Abstract

Localized in vivo spectroscopy at high magnetic field strength (>3T) is susceptible to localization artifacts such as the chemical shift artifact and the spatial interference artifact for J-coupled spins. This latter artifact results in regions of anomalous phase for J-coupled spins. These artifacts are exacerbated at high magnetic field due to the increased frequency dispersion, coupled with the limited RF pulse bandwidths used for localization. Approaches to minimize these artifacts include increasing the bandwidth of the frequency selective excitation pulses, and the use of frequency selective saturation pulses to suppress the signals in the regions with anomalous phase. The goal of this article is to demonstrate the efficacy of optimal control methods to provide broader bandwidth frequency selective pulses for in vivo spectroscopy in the presence of limited RF power. It is demonstrated by examples that the use of optimal control methods enable the generation of (i) improved bandwidth selective excitation pulses, (ii) more efficient selective inversion pulses to be used for generation of spin echoes, and (iii) improved frequency selective saturation pulses. While optimal control also allows for the generation of frequency selective spin echo pulses, it is argued that it is more efficient to use dual inversion pulses for broadband generation of spin echoes. Finally, the optimal control routines and example RF pulses are made available for downloading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724660PMC
http://dx.doi.org/10.1016/j.jmr.2009.03.010DOI Listing

Publication Analysis

Top Keywords

optimal control
20
frequency selective
20
vivo spectroscopy
12
pulses
10
pulses vivo
8
spectroscopy high
8
limited power
8
high magnetic
8
magnetic field
8
j-coupled spins
8

Similar Publications

A synchronized event-cue feedback loop integrating a 3D printed wearable flexible sensor-tactor platform.

Biosens Bioelectron

January 2025

Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA; Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA. Electronic address:

Wearable devices designed for the somatosensory system aim to provide event-cue feedback electronics and therapeutic stimulation to the peripheral nervous system. This prompts a neurological response that is relayed back to the central nervous system. Unlike virtual reality tools, these devices precisely target peripheral mechanoreceptors by administering specific stimuli.

View Article and Find Full Text PDF

Background: A number of efforts have been made to tailor behavioral healthcare treatments to the variable needs of patients with low back pain (LBP). The most common approach involves the STarT Back Screening Tool (SBST) to triage the need for psychologically informed care, which explores concerns about pain and addresses unhelpful beliefs, attitudes, and behaviors. Such beliefs that pain always signifies injury or tissue damage and that exercise should be avoided have been implied as psychosocial mediators of chronic pain and can impede recovery.

View Article and Find Full Text PDF

Spatiotemporal profile of an optimal host response to virus infection in the primate central nervous system.

PLoS Pathog

January 2025

Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America.

Viral infections of the central nervous system (CNS) are a major cause of morbidity largely due to lack of prevention and inadequate treatments. While mortality from viral CNS infections is significant, nearly two thirds of the patients survive. Thus, it is important to understand how the human CNS can successfully control virus infection and recover.

View Article and Find Full Text PDF

Objective Thyroid hormones (TH) control a variety of processes in the central nervous system and influence its response to different stimuli, such as ischemic stroke. Post-stroke administration of 3,3',5-triiodo-L-thyronine (T3) has been reported to substantially improve outcomes, but the optimal dosage and time window remain elusive. Methods Stroke was induced in mice by transient middle cerebral artery occlusion (tMCAO) and T3 was administered at different doses and time points before and after stroke.

View Article and Find Full Text PDF

Protect or prevent? A practicable framework for the dilemmas of COVID-19 vaccine prioritization.

PLoS One

January 2025

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, United States of America.

Determining COVID-19 vaccination strategies presents many challenges in light of limited vaccination capacity and the heterogeneity of affected communities. Who should be prioritized for early vaccination when different groups manifest different levels of risks and contact rates? Answering such questions often becomes computationally intractable given that network size can exceed millions. We obtain a framework to compute the optimal vaccination strategy within seconds to minutes from among all strategies, including highly dynamic ones that adjust vaccine allocation as often as required, and even with modest computation resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!