Several bioactive peptides exert their biological function by interacting with cellular membranes. Structural data on their location inside lipid bilayers are thus essential for a detailed understanding of their mechanism of action. We propose here a combined approach in which fluorescence spectroscopy and molecular dynamics (MD) simulations were applied to investigate the mechanism of membrane perturbation by the antimicrobial peptide PMAP-23. Fluorescence spectra, depth-dependent quenching experiments, and peptide-translocation assays were employed to determine the location of the peptide inside the membrane. MD simulations were performed starting from a random mixture of water, lipids and peptide, and following the spontaneous self-assembly of the bilayer. Both experimental and theoretical data indicated a peptide location just below the polar headgroups of the membrane, with an orientation essentially parallel to the bilayer plane. These findings, together with experimental results on peptide-induced leakage from large and giant vesicles, lipid flip-flop and peptide exchange between vesicles, support a mechanism of action consistent with the "carpet" model. Furthermore, the atomic detail provided by the simulations suggested the occurrence of an additional, more specific and novel mechanism of bilayer destabilization by PMAP-23, involving the unusual insertion of charged side chains into the hydrophobic core of the membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2009.04.013 | DOI Listing |
Anal Chem
January 2025
Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, Strasbourg F-67000, France.
The worldwide spread of antibiotic resistance is considered to be one of the major health threats to society. While developing new antibiotics is crucial, there is also a strong need for next-generation analytical methods for studying the physiological state of live bacteria in heterogeneous populations and their response to environmental stress. Here we report a single-cell high-throughput method to monitor changes in the bacterial cell envelope in response to stress based on ratiometric flow cytometry.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China.
-Methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors in the central nervous system (CNS), have garnered attention for their role in brain disorders. Specifically, GluN2A-containing NMDA receptors have emerged as a potential therapeutic target for the treatment of depressive disorders and epilepsy. However, the development of GluN2A-containing NMDA receptor-selective antagonists, represented by -(4-(2-benzoylhydrazine-1-carbonyl)benzyl)-3-chloro-4-fluorobenzenesulfonamide (TCN-201) and its derivatives, faces a significant challenge due to their limited ability to penetrate the blood-brain barrier (BBB), hampering their characterization and further advancement.
View Article and Find Full Text PDFAutophagy
January 2025
Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
The multi-step macroautophagy/autophagy process ends with the cargo-laden autophagosome fusing with the lysosome to deliver the materials to be degraded. The metazoan-specific autophagy factor EPG5 plays a crucial role in this step by enforcing fusion specificity and preventing mistargeting. How EPG5 exerts its critical function and how its deficiency leads to diverse phenotypes of the rare multi-system disorder Vici syndrome are not fully understood.
View Article and Find Full Text PDFBiomaterials
January 2025
School of Life Science, Chongqing University, Chongqing, 400044, China. Electronic address:
In-situ tumor vaccination remains challenging due to difficulties in the exposure and presentation of tumor-associated neoantigens (TANs). In view of the central role of lipid metabolism in cell fate determination and tumor-immune cell communication, here we report a photo-controlled lipid metabolism nanoregulator (PLMN) to achieve robust in-situ adjuvant-free vaccination, which is constructed through hierarchically integrating photothermal-inducible arachidonate 15-lipoxygenase (ALOX15)-expressing plasmids, cypate and FIN56 into cationic liposomes. Near-infrared light (NIR) stimulation triggers on-demand ALOX15 editing and causes excessive accumulation of downstream pro-ferroptosis lipid metabolites.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!