Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although abundant evidence indicates mutual regulation between the immune and the central nervous systems, how the immune signals are transmitted to the brain is still an unresolved question. In a previous study we found strong expression of proinflammatory cytokine receptors, including interleukin (IL)-1 receptor I and IL-6 receptor alpha in the rat carotid body (CB), a well-known arterial chemoreceptor that senses a variety of chemostimuli in the arterial blood. We demonstrated that IL-1 stimulation increases intracellular calcium ([Ca(2+)](i)) in CB glomus cells, releases ATP, and increases the discharge rate in carotid sinus nerve. To explore the effect of IL-6 on CB, here we examine the effect of IL-6 on [Ca(2+)](i) and catecholamine (CA) secretion in rat CB glomus cells. Calcium imaging showed that extracellular application of IL-6 induced a rise in [Ca(2+)](i) in cultured glomus cells. Amperometry showed that local application of IL-6 evoked CA release from glomus cells. Furthermore, the CA secretory response to IL-6 was blocked by 200 microM Cd(2+), a well-known Ca(2+) channel blocker. Our experiments provide further evidence for the responsiveness of the CB to proinflammatory cytokines and indicate that the CB might play a role in inflammation sensing and transmission of such information to the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.22107 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!