A comparison of the laboratory reflectance spectra of meteorites with observations of asteroids revealed that the latter are much 'redder', with the spectral difference explained by 'space weathering', though the actual processes and timescales involved have remained controversial. A recent study of young asteroid families concluded that they suffered only minimal space weathering. Here we report additional observations of those families, revealing that space weathering must be a very rapid process-the final colour of a silicate-rich asteroid is acquired shortly after its 'birth' (within 10(6) years of undergoing a catastrophic collision). This rapid timescale favours solar wind implantation as the main mechanism of space weathering, as laboratory experiments have shown that it is the most rapid of several competing processes. We further demonstrate the necessity to take account of composition when evaluating weathering effectiveness, as both laboratory and asteroid data show an apparent dependence of weathering on olivine abundance. The rapid colour change that we find implies that colour trends seen among asteroids are most probably due to compositional or surface-particle-size properties, rather than to different relative ages. Apparently fresh surfaces most frequently seen among small near-Earth asteroids may be the result of tidal shaking that rejuvenates their surfaces during planetary encounters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature07956 | DOI Listing |
Adv Sci (Weinh)
January 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
A purple-pigmented (purple) rice seeds containing an anthocyanin, a major class of flavonoids, and their isogenic non-pigmented (white) seeds were exposed outside of the international space station (ISS) to evaluate the impact of anthocyanin on seed viability in space. The rice seeds were placed in sample plates at the exposed facility of ISS for 440 days, with the bottom layer seeds exposed to space radiation and the top layer seeds exposed to both solar light and space radiation. Though the seed weight of both purple and white seeds decreased after exposure to outer space, growth percentages after germination of purple and white seeds in the top layer were 55 and 15 %, respectively, compared to those in the bottom layer 100 and 70 %, respectively.
View Article and Find Full Text PDFIntroduction: Space agencies will embark on manned journeys to Mars on smaller vehicles than those used previously. In-flight exercise on those flights must abate the adverse effects microgravity (μG) has on humans. Due to space constraints on these vehicles, a single exercise device must address multiple fitness needs.
View Article and Find Full Text PDFAstrobiology
January 2025
Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA.
Waste heat production represents an inevitable consequence of energy conversion as per the laws of thermodynamics. Based on this fact, by using simple theoretical models, we analyze constraints on the habitability of Earth-like terrestrial planets hosting putative technological species and technospheres characterized by persistent exponential growth of energy consumption and waste heat generation. In particular, we quantify the deleterious effects of rising surface temperature on biospheric processes and the eventual loss of liquid water.
View Article and Find Full Text PDFIntroduction: Rock weathering is a fundamental process that shapes Earth's topography, soil formation, and other surface processes. However, the mechanisms underlying the influence of fertilizer application on weathering remain poorly understood, especially with respect to bacterial intervention.
Methods: In this study, purple parent rocks from Shaximiao Group (Js) and Penglaizhen Group (Jp) were selected to investigate the effects of fertilizer application on the bacterial community and weathering characteristics of these rock by leaching experiment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!