The macroautophagy (autophagy) pathway is thought to be involved in a variety of neurodegenerative diseases, including Alzheimer disease (AD). It is not clear however, if autophagy plays a causative role, a protective role or is a consequence of the disease process itself. Using a Drosophila model of neuron-limited expression of AD-associated amyloid beta (Abeta) peptides, we have demonstrated an autophagy-mediated neurodegenerative cascade that is initiated by Abeta(1-42) and enhanced by aging. Our results suggest a central role for the autophagy pathway in AD type neurodegeneration and a new framework to understand seemingly unrelated AD phenotypes.

Download full-text PDF

Source
http://dx.doi.org/10.4161/auto.5.5.8626DOI Listing

Publication Analysis

Top Keywords

central role
8
role autophagy
8
autophagy pathway
8
autophagy
4
autophagy alzheimer-type
4
alzheimer-type neurodegeneration
4
neurodegeneration macroautophagy
4
macroautophagy autophagy
4
pathway thought
4
thought involved
4

Similar Publications

Target-regulated AgS/FeOOH heterojunction activity: a direct label-free photoelectrochemical immunosensor.

Mikrochim Acta

January 2025

College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.

Myoglobin (Mb), an important cardiac marker, plays a crucial role in diagnosing, monitoring, and evaluating the condition of patients with cardiovascular diseases. Here, we propose a label-free photoelectrochemical (PEC) sensor for the detection of Mb through target regulated the photoactivity of AgS/FeOOH heterojunction. The AgS/FeOOH nanospindles were synthesized and served as a sensing platform for the fabrication of bio-recognized process for Mb.

View Article and Find Full Text PDF

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

Disentangling the neural underpinnings of response inhibition in disruptive behavior and co-occurring ADHD.

Eur Child Adolesc Psychiatry

January 2025

Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

While impaired response inhibition has been reported in attention-deficit/hyperactivity disorder (ADHD), findings in disruptive behavior disorders (DBDs) have been inconsistent, probably due to unaccounted effects of co-occurring ADHD in DBD. This study investigated the associations of behavioral and neural correlates of response inhibition with DBD and ADHD symptom severity, covarying for each other in a dimensional approach. Functional magnetic resonance imaging data were available for 35 children and adolescents with DBDs (8-18 years old, 19 males), and 31 age-matched unaffected controls (18 males) while performing a performance-adjusted stop-signal task.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!