The unprecedented brilliance achieved by third-generation synchrotron sources and the availability of improved optics have opened up new opportunities for the study of materials at the micrometre and nanometre scale. Focusing the synchrotron radiation to smaller and smaller beams is having a huge impact on a wide research area at synchrotrons. The key to the exploitation of the improved sources is the development of novel optics that deliver narrow beams without loss of brilliance and coherence. Several types of synchrotron focusing optics are successfully fabricated using advanced miniaturization techniques. Kinoform refractive lenses are being developed for hard X-ray beamlines, and the first test results at Diamond are discussed in this paper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S0909049509003215 | DOI Listing |
Dalton Trans
January 2025
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Facultad de Química, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, 41092 Sevilla, Spain.
Redox-active ligands provide alternative reaction pathways by facilitating redox events. Among these, tridentate bis(piridylimino)isoindole (BPI) fragments offer great potential, though their redox-active behaviour remains largely underdeveloped. We describe herein a family of BPI germanium(II) complexes and the study of their redox properties.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Mechanical Engineering, Institute of Materials and Biomedical Engineering, University of Zielona Gora, prof. Z. Szafrana 4 Street, Zielona Gora, 65-516, Poland.
This article presents the results of study on the material characterization of germanium-indium drosses (Ge-In-D). Ge-In-D are a by-product of obtaining zinc and lead, which are currently not processed yet. Due to the exceptionally high concentrations of germanium and indium in them, as well as the commercial value of these elements, it became important to properly identify Ge-In-D, which was the aim of this work.
View Article and Find Full Text PDFChemosphere
February 2025
Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
While vegetable uptake of traditional metal contaminants is a well-studied pathway to human exposure and risk, a paucity of information exists on the uptake of emerging metal contaminants. This study evaluated the uptake of the Technology-critical elements (TCEs) gallium (Ga), germanium (Ge), niobium (Nb), tantalum (Ta), thallium (Tl), and rare earth elements (REEs) into lettuce cultivated in 21 European urban soils. For comparison, the uptake of cadmium (Cd) was also analysed.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC-CNR, Via Corti, 20132 Milan, Italy.
Germanium (Ge) has long been recognized for its superior carrier mobility and narrower band gap compared to silicon, making it a promising candidate in microelectronics and optoelectronics. The recent demonstration of good biocompatibility, combined with the ability to selectively functionalize its surface, establishes the way for its use in biosensing and bioimaging. This review provides a comprehensive analysis of the most recent advancements in the wet chemical functionalization of germanium surfaces.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.
Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!