AI Article Synopsis

  • Impaired skeletal muscle function in COPD patients can worsen exercise tolerance, and exercise may lead to oxidative stress, which affects muscle function.
  • Dichloroacetate (DCA) was tested to see if it could improve exercise performance and reduce oxidative stress and inflammation during exercise in COPD patients.
  • Results showed that DCA infusion improved peak workload during exercise and altered some oxidative stress markers, but it also increased IL-6 levels, indicating a complex response to the treatment.

Article Abstract

Background: Impaired skeletal muscle function contributes to exercise intolerance in patients with COPD. Exercise-induced oxidative stress may initiate or accelerate impaired muscle function. Dichloroacetate (DCA) activates muscle pyruvate dehydrogenase complex (PDC) at rest, reducing inertia in mitochondrial energy delivery at the onset of exercise and thereby diminishing anaerobic energy production. This study aimed to determine whether DCA infusion also may reduce exercise-induced systemic oxidative stress and inflammatory response in patients with COPD.

Methods: A randomized, double-blind crossover design was used in which 13 patients with COPD performed maximal cycle exercise after an IV infusion of DCA (50 mg/kg body mass) or saline solution (placebo). Venous blood was sampled before exercise, and immediately, 30 min, and 2 h after exercise. Urine samples were obtained before and 2 h after exercise.

Results: Peak workload improved significantly after DCA infusion compared to placebo (10%; p < 0.01). Urinary uric acid levels after exercise were significantly lower in the DCA condition than in the placebo condition, whereas no significant difference was observed for urinary malondialdehyde levels. Oxidized glutathione (GSSG) levels were significantly increased 2 h after exercise in the placebo condition (p < 0.02) but not after DCA infusion. No changes in reduced glutathione (GSH), GSSG/GSH ratio, and superoxide dismutase activity were observed. Plasma interleukin (IL)-6 levels significantly increased 2 h after exercise only in the DCA condition (p < 0.01).

Conclusions: This study shows that improved performance after a pharmacologic intervention known to activate PDC was accompanied by an enhanced IL-6 response and a limited reduction in exercise-induced systemic oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1378/chest.08-2890DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
dca infusion
12
exercise
9
stress inflammatory
8
inflammatory response
8
muscle function
8
patients copd
8
exercise-induced systemic
8
systemic oxidative
8
dca condition
8

Similar Publications

MAPK-CncC Signaling Pathways Regulate the Antitoxic Response to Avermectin-Induced Oxidative Stress in Juvenile Chinese Mitten Crab, .

Environ Sci Technol

January 2025

Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.

This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.

View Article and Find Full Text PDF

Pseudoexfoliation glaucoma is a severe form of secondary open angle glaucoma and is associated with activation of the TGF-β pathway by TGF-β1. MicroRNAs (miRNAs) are small non-coding RNA species that are involved in regulation of mRNA expression and translation. To investigate what glaucomatous changes occur in the trabecular meshwork and how these changes may be regulated by miRNAs, we performed a bioinformatics analysis resulting in a miRNA-mRNA interactome.

View Article and Find Full Text PDF

Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation.

View Article and Find Full Text PDF

Growth hormone-releasing hormone signaling and manifestations within the cardiovascular system.

Rev Endocr Metab Disord

January 2025

Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA.

Growth hormone (GH)-releasing hormone (GHRH), a hypothalamic peptide initially characterized for its role in GH regulation, has gained increasing attention due to its GH-independent action on peripheral physiology, including that of the cardiovascular system. While its effects on the peripheral vasculature are still under investigation, GHRH and synthetic agonists have exhibited remarkable receptor-mediated cardioprotective properties in preclinical models. GHRH and its analogs enhance myocardial function by improving contractility, reducing oxidative stress, inflammation, and offsetting pathological remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!