In response to various environmental stresses, the stress-responsive MAPKs p38 and JNK are activated and phosphorylate ATF2 and c-Jun transcription factors, thereby affecting cell-fate decision. Targeted gene disruption studies have established that JNK-c-Jun signaling plays a vital role in stress-induced apoptosis. The oncogenic phosphatase Wip1 acts as an important regulator in DNA damage pathway by dephosphorylating a spectrum of proteins including p53, p38, Chk1, Chk2, and ATM. In this study we show that Wip1 negatively regulates the activation of MKK4-JNK-c-Jun signaling during stress-induced apoptosis. The loss of Wip1 function sensitizes mouse embryonic fibroblasts to stress-induced apoptosis via the activation of both p38-ATF2 and JNK-c-Jun signaling. Here we reveal that Wip1 has dual roles in alternatively regulating stress- and DNA damage-induced apoptosis through p38/JNK MAPKs and p38/p53-dependent pathways, respectively. Our results point to Wip1 as a general regulator of apoptosis, which further supports its role in tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719383 | PMC |
http://dx.doi.org/10.1074/jbc.M109.007823 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!