Purpose: To investigate the planning efficiency and dosimetric characteristics of hybrid direct aperture optimized (hDAO) intensity-modulated radiotherapy (IMRT) compared with forward planning (FP)-IMRT for whole breast irradiation with two tangential beams.
Methods And Materials: A total of 15 patients with left-sided breast cancer, categorized with three different breast volumes, were selected for this study. All patients were treated with FP plans to 50 Gy in 25 fractions. The hDAO plans were created by combining two open fields with eight segments in two tangential beam directions and were inversely optimized.
Results: The FP and hDAO plans achieved similar breast coverage and sparing of critical organs. The volume of breast receiving 105% of the prescription dose was significantly smaller in the hDAO than in the FP plans: 25% vs. 63% (p = .008) for small, 22% vs. 57% (p = .005) for medium, and 28% vs. 53% (p = .005) for large breasts. Furthermore, the tumor cavity coverage was slightly better in the hDAO plans (92.4% vs. 90.9%).
Conclusion: Compared with FP-IMRT, hDAO-IMRT provided dosimetric advantages, significantly reducing the size of the hot spot and slightly improving the coverage of the tumor cavity. In addition, hDAO-IMRT required less planning time and was less dependent on the planner's ability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2009.01.011 | DOI Listing |
Phys Med Biol
March 2022
Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
The purpose of this work was to develop a hybrid column generation (CG) and simulated annealing (SA) algorithm for direct aperture optimization (H-DAO) and to show its effectiveness in generating high quality treatment plans for intensity modulated radiation therapy (IMRT) and mixed photon-electron beam radiotherapy (MBRT). The H-DAO overcomes limitations of the CG-DAO with two features improving aperture selection (branch-feature) and enabling aperture shape changes during optimization (SA-feature). The H-DAO algorithm iteratively adds apertures to the plan.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2010
Department of Radiation Oncology, University of California San Francisco, School of Medicine, San Francisco, CA 94143-1708, USA.
Purpose: To investigate the planning efficiency and dosimetric characteristics of hybrid direct aperture optimized (hDAO) intensity-modulated radiotherapy (IMRT) compared with forward planning (FP)-IMRT for whole breast irradiation with two tangential beams.
Methods And Materials: A total of 15 patients with left-sided breast cancer, categorized with three different breast volumes, were selected for this study. All patients were treated with FP plans to 50 Gy in 25 fractions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!