N-(2-Methylphenyl)-9-oxo-9H-fluorene-1-carboxamide (2a) was identified as a novel apoptosis inducer through our caspase- and cell-based high-throughput screening assay. Compound 2a was found to be active with sub-micromolar potencies for both caspase induction and growth inhibition in T47D human breast cancer, HCT116 human colon cancer, and SNU398 hepatocellular carcinoma cancer cells. It arrested HCT116 cells in G(2)/M followed by apoptosis as assayed by the flow cytometry. Structure-activity relationship (SAR) studies of the carboxamide group identified the lead compound N-(2-(1H-pyrazol-1-yl)phenyl)-9-oxo-9H-fluorene-1-carboxamide (6s). Compound 6s, with increased aqueous solubility, was found to retain the broad activity in the caspase activation assay and in the cell growth inhibition assay with sub-micromolar EC(50) and GI(50) values in T47D, HCT116, and SNU398 cells, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2009.04.009DOI Listing

Publication Analysis

Top Keywords

high-throughput screening
8
screening assay
8
carboxamide group
8
growth inhibition
8
discovery n-aryl-9-oxo-9h-fluorene-1-carboxamides
4
n-aryl-9-oxo-9h-fluorene-1-carboxamides series
4
series apoptosis
4
apoptosis inducers
4
inducers cell-
4
cell- caspase-based
4

Similar Publications

Construction and Characterization of a Mutant Library for the P Constitutive Promoter in Lactic Acid Bacteria.

J Biotechnol

January 2025

Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:

Promoters are crucial elements for controlling gene expression in cells, yet lactic acid bacteria (LAB) often lack a diverse set of available constitutive promoters with quantitative characterization. To enrich the LAB promoter library, this study focused on the known strong constitutive promoter P in LAB. Through error-prone PCR and dNTP analog-induced random mutagenesis, a library of 247 mutants of P was generated by using the red fluorescent protein (RFP) fluorescence intensity as a high-throughput screening indicator in Streptococcus thermophilus.

View Article and Find Full Text PDF

Deep learning methods for proteome-scale interaction prediction.

Curr Opin Struct Biol

January 2025

Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Proteome-scale interaction prediction is essential for understanding protein functions and disease mechanisms. Traditional experimental methods are often limited by scale and complexity, driving the need for computational approaches. Deep learning has emerged as a powerful tool, enabling high-throughput, accurate predictions of protein interactions.

View Article and Find Full Text PDF

Investigation of the threonine metabolism of Echinococcus multilocularis: The threonine dehydrogenase as a potential drug target in alveolar echinococcosis.

Int J Parasitol Drugs Drug Resist

January 2025

Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland. Electronic address:

Alveolar echinococcosis (AE) is a severe zoonotic disease caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis. We recently showed that E. multilocularis metacestode vesicles scavenge large amounts of L-threonine from the culture medium.

View Article and Find Full Text PDF

Background: One in five sebaceous tumour (ST) patients may have Lynch syndrome (LS), a hereditary cancer predisposition. LS patients benefit from cancer surveillance and prevention programmes and immunotherapy. Whilst universal tumour mismatch repair (MMR) deficiency testing is recommended in colorectal and endometrial cancers to screen for LS, there is no consensus screening strategy for ST, leading to low testing rates and inequity of care.

View Article and Find Full Text PDF

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to persist, demonstrating the risks posed by emerging infectious diseases to national security, public health, and the economy. Development of new vaccines and antibodies for emerging viral threats requires substantial resources and time, and traditional development platforms for vaccines and antibodies are often too slow to combat continuously evolving immunological escape variants, reducing their efficacy over time. Previously, we designed a next-generation synthetic humanized nanobody (Nb) phage display library and demonstrated that this library could be used to rapidly identify highly specific and potent neutralizing heavy chain-only antibodies (HCAbs) with prophylactic and therapeutic efficacy in vivo against the original SARS-CoV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!