beta-Glucan attenuates TLR2- and TLR4-mediated cytokine production by microglia.

Neurosci Lett

Division of Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA.

Published: July 2009

Microglia, the resident immune cells of the brain, are activated in response to any kind of CNS injury, and their activation is critical for maintaining homeostasis within the CNS. However, during inflammatory conditions, sustained microglial activation results in damage to surrounding neuronal cells. beta-Glucans are widely recognized immunomodulators, but the molecular mechanisms underlying their immunomodulatory actions have not been fully explored. We previously reported that beta-glucans activate microglia through Dectin-1 without inducing significant amount of cytokines and chemokines. Here, we show that particulate beta-glucans attenuate cytokine production in response to TLR stimulation; this inhibitory activity of beta-glucan is mediated by Dectin-1 and does not require particle internalization. At the molecular level, beta-glucan suppressed TLR-mediated NF-kappaB activation, which may be responsible for the diminished capacity of microglia to produce cytokines in response to TLR stimulation. Overall, these results suggest that beta-glucans may be used to prevent or treat excessive microglial activation during chronic inflammatory conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4435685PMC
http://dx.doi.org/10.1016/j.neulet.2009.04.039DOI Listing

Publication Analysis

Top Keywords

cytokine production
8
inflammatory conditions
8
microglial activation
8
response tlr
8
tlr stimulation
8
beta-glucan attenuates
4
attenuates tlr2-
4
tlr2- tlr4-mediated
4
tlr4-mediated cytokine
4
microglia
4

Similar Publications

Background: Inflammation is a critical protective response in the body, essential for combating infections and healing injuries. However, chronic inflammation can be harmful and significantly contribute to the development and progression of chronic diseases, with macrophage-mediated responses being central to these processes. This study presents "SBR-Pel," a new therapeutic blend of Shinbaro tab (SBR), a traditional herbal formula, and pelubiprofen (Pel), a non-steroidal anti-inflammatory drug, and investigated their combined anti-inflammatory effects to create a treatment that both improves efficacy and reduces side effects.

View Article and Find Full Text PDF

Tregs for adoptive therapy are traditionally expanded ex vivo using high doses of IL-2. However, the final Treg product has limited survival once infused in patients, potentially affecting therapeutic effectiveness. Here, we tested a novel expansion protocol in which highly purified naïve Tregs were expanded with a combination of IL-7 and IL-15, in the absence of IL-2.

View Article and Find Full Text PDF

Mycoplasma pneumoniae caused lower respiratory tract infection in children and can exacerbate these infections through the production of various inflammatory factors, with chemokines playing a key role. However, the pathogenesis of this infection is complicated and thus has not been thoroughly studied. We clarified that cytokine expression levels were analyzed in both peripheral blood and bronchoalveolar lavage fluid (BALF), and in vitro assays were conducted using THP-1 macrophages.

View Article and Find Full Text PDF

TRAF2 and RIPK1 redundantly mediate classical NFκB signaling by TNFR1 and CD95-type death receptors.

Cell Death Dis

January 2025

Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany.

This study suggests a modified model of TNFR1-induced complex I-mediated NFκB signaling. Evaluation of a panel of five tumor cell lines (HCT116-PIK3CAmut, SK-MEL-23, HeLa-RIPK3, HT29, D10) with TRAF2 knockout revealed in two cell lines (HT29, HeLa-RIPK3) a sensitizing effect for death receptor-induced necroptosis and in one cell line (D10) a mild sensitization for TNFR1-induced apoptosis. TRAF2 deficiency inhibited death receptor-induced classical NFκB-mediated production of IL-8 only in a subset of cell lines and only partly.

View Article and Find Full Text PDF

Background And Aim: Rheumatoid arthritis (RA) is a chronic inflammatory disease that primarily involves synovial joints. During the past decade, disease-modifying antirheumatic drugs and biologic agents have been introduced for the treatment of RA. However, they have limitations, including incomplete treatment response, adverse effects requiring drug withdrawal, fall off in efficacy over time, high cost of biologic agents, and refractory cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!