Diabetes modulates capacitative calcium entry and expression of transient receptor potential canonical channels in human saphenous vein.

Eur J Pharmacol

The James Hogg iCAPTURE Center for the Cardiovascular and Pulmonary Research, St Paul's Hospital, Vancouver, British Columbia, Canada.

Published: June 2009

Diabetes is associated with a perturbation of signaling pathways in vascular tissue, which causes vasomotor dysfunction such as hypertension. We have previously demonstrated that vessels from diabetic patients were more contractile than those from non-diabetic. However, in human vessels, the receptor-stimulated contraction is mainly due to enzymatic, rather than calcium signaling pathway. In this study, we hypothesized that the differential contractile response between diabetic and non-diabetic human vessels could be due to the receptor signaling to sarcoplasmic reticulum and the regulation of capacitative calcium entry. In saphenous vein samples (n=20) collected from diabetic patients undergoing bypass surgery, the contraction initiated by the addition of the sarco-endoplasmatic reticulum calcium ATPase blocker, cyclopiazonic acid, was significantly higher than that in the vessels from non-diabetic patients (n=26) (84.0+/-14.9% vs 44.2+/-9.2%), and this contraction was inhibited by SKF-96365, an inhibitor of store-operated calcium channels. Pre-incubation with indomethacin reduced the cyclopiazonic acid-induced contraction in the non-diabetic veins, but had no effect on the diabetic ones. The gene expression of transient receptor potential canonical channels (TRPC)4 was upregulated by 22% in the diabetic vessels compared with the non-diabetic ones. However, the protein expression of TRPC1 and TRPC6 was downregulated in the diabetic group by 50%. We concluded that diabetes would modulate the capacitative calcium entry likely through the store-operated calcium channel specifically via the regulation of TRPC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2009.04.029DOI Listing

Publication Analysis

Top Keywords

capacitative calcium
12
calcium entry
12
expression transient
8
transient receptor
8
receptor potential
8
potential canonical
8
canonical channels
8
saphenous vein
8
diabetic patients
8
non-diabetic human
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!