The determination of delta(9)-tetrahydrocannabinol (Delta9-THC), cannabidiol (CND) and cannabinol (CNB), primary active components in cannabis preparation, was carried out on airborne particulates by applying a specific procedure consisting of soot extraction by ultrasonic bath, purification by solvent partitioning, derivatization with N-(t-butyldimethylsilyl)-N-methyl-trifluoroacetamide, and separation/detection through gas chromatography coupled with tandem mass spectrometry. The optimized procedure was found suitable for measuring the three psychotropic substances at concentrations ranging from ca. 0.001 to ca. 5.0 ng cm(-3) of air, with recoveries always higher than 82%, accuracy >7.3% and precision >90%. Application of the procedure performed on field in Rome and Bari, Italy, demonstrated that all three compounds contaminate the air in Italian cities whereas in Algiers, Algeria, only cannabinol, the most stable in the atmosphere, exceeded the limit of quantification of the method. The relative percentages of the three cannabinoids in general reproduced those typical of the Cannabis sativa plant and were very different from those found in human blood, urine and sweat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2009.03.037 | DOI Listing |
Toxics
December 2024
Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Antibiotic resistance genes (ARGs) are emerging as significant environmental contaminants, posing potential health risks worldwide. Intensive livestock farming, particularly swine production, is a primary contributor to the escalation of ARG pollution. In this study, we employed metagenomic sequencing and quantitative polymerase chain reaction to analyze the composition of microorganisms and ARGs across four vectors in a typical swine fattening facility: dung, soil, airborne particulate matter (PM), and fodder.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland.
This study explores the fabrication of electret nonwoven structures for high-efficiency air filtration, utilizing the blow spinning technique. In response to the growing need for effective filtration systems, we aimed to develop biodegradable materials capable of capturing fine particulate matter (PM2.5) without compromising environmental sustainability.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2024
Buildings' Services Faculty, Technical University of Civil Engineering of Bucharest, 020396 Bucharest, Romania.
This study presents a modern mobile laboratory to monitor outdoor air quality in Bucharest, Romania, with a focus on pollutants associated with transportation. Particulate matter (PM., PM), carbon monoxide (CO), ozone (O), sulfur dioxide (SO), nitrogen oxides (NO, NO), and BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) were among the significant pollutants that were examined in the lab.
View Article and Find Full Text PDFBiomolecules
December 2024
Educación Superior, Centro de Estudios, "Justo Sierra", Surutato, Badiraguato 80600, Mexico.
Obesity, influenced by environmental pollutants, can lead to complex metabolic disruptions. This systematic review and meta-analysis examined the molecular mechanisms underlying metabolically abnormal obesity caused by exposure to a high-fat diet (HFD) and fine particulate matter (PM). Following the PRISMA guidelines, articles from 2019 to 2024 were gathered from Scopus, Web of Science, and PubMed, and a random-effects meta-analysis was performed, along with subgroup analyses and pathway enrichment analyses.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
Prostate cancer (PCa), a highly prevalent cancer in men worldwide, is projected to rise in the coming years. As emerging data indicate the carcinogenic effects of fine particulate matter (PM2.5) in lung cancer and other site-specific cancers, there is an urgent need to evaluate the relationship between this environmental risk factor and PCa as a potential target for intervention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!