Nemaline myopathy is a neuromuscular disorder, characterized by muscle weakness and hypotonia and is, in 20% of the cases, caused by mutations in the gene encoding alpha-skeletal muscle actin, ACTA1. It is a heterogeneous disease with various clinical phenotypes and severities. In patients the ultrastructure of muscle cells is often disturbed by nemaline rods and it is thought this is the cause for muscle weakness. To search for possible defects during muscle cell differentiation we expressed alpha-actin mutants in myoblasts and allowed these cells to differentiate into myotubes. Surprisingly, we observed two striking new phenotypes in differentiating myoblasts: rounding up of cells and bleb formation, two features reminiscent of apoptosis. Indeed expression of these mutants induced cell death with apoptotic features in muscle cell culture, using AIF and endonuclease G, in a caspase-independent but calpain-dependent pathway. This is the first report on a common cellular defect induced by NM causing actin mutants, independent of their biochemical phenotypes or rod and aggregate formation capacity. These data suggest that lack of type II fibers or atrophy observed in nemaline myopathy patients may be also due to an increased number of dying muscle cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2009.04.004 | DOI Listing |
Tunis Med
January 2025
University of Sfax, Military University Hospital of Sfax, Cardiology Department, Sfax, Tunisia.
Introduction: Nemaline myopathy (NM), also known as Nemalinosis, is a rare congenital muscle disease with an incidence of 1 in 50000. It is characterized by nemaline rods in muscle fibers, leading to muscle weakness. We reported a case of NM revealed by cardiac involvement, and we highlighted the challenges in diagnosing this condition as well as its poor prognosis.
View Article and Find Full Text PDFNeurol Genet
February 2025
Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
Background And Objectives: Neonatal encephalopathy (NE) is characterized by an abnormal level of consciousness with or without seizures in the neonatal period. It affects 1-6/1,000 live term newborns. We applied genome sequencing (GS) in term newborns with NE to investigate the underlying genetic causes.
View Article and Find Full Text PDFIntroduction: Structural variants (SVs) of the nebulin gene (), including intragenic duplications, deletions, and copy number variation of the triplicate region, are an established cause of recessively inherited nemaline myopathies and related neuromuscular disorders. Large deletions have been shown to cause dominantly inherited distal myopathies. Here we provide an overview of 35 families with muscle disorders caused by such SVs in .
View Article and Find Full Text PDFRes Sq
December 2024
Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, CAN.
Biallelic pathogenic variants in the nebulin () gene lead to the congenital muscle disease nemaline myopathy. In-frame deletion of exon 55 (ΔExon55) is the most common disease-causing variant in . Previously, a mouse model of was developed; however, it presented an uncharacteristically severe phenotype with a near complete reduction in transcript expression that is not observed in exon 55 patients.
View Article and Find Full Text PDFNeurol India
November 2024
Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
Sporadic late-onset nemaline rod myopathy is a rare, acquired, sub-acute, adult-onset myopathy characterized by proximal muscle weakness and nemaline rods in the myofibers. In contrast to its congenital form, the prevalence in adult population is comparatively rare. Herein, we report a case of 60-year-old male who presented with insidious onset proximal muscle weakness with myopathic pattern on electromyography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!