Vulnerability to the addictive effects of drugs of abuse varies among individuals, but the biological basis of these differences are poorly known. This work tries to increase this knowledge by comparing the brain proteome of animals with different rate of extinction of cocaine-seeking behaviour. To achieve this goal, we used a place-preference paradigm to separate Sprague Dawley rats in two groups: rats that extinguished (E) and rats that did not extinguish (NE) cocaine-seeking behaviour after a five-day period of drug abstinence. Once the phenotype was established, we compared the protein expression in the nucleus accumbens (NAC) of these animals after a single injection of either saline (SAL) or cocaine (COC, 15 mg/kg). The analysis of protein expression was performed by 2-dimensional electrophoresis followed by matrix-assisted laser desorption/ionization time of flight mass spectrometry. When comparing E SAL and NE SAL animals we found significant differences in the expression level of 5 proteins: ATP synthase subunit alpha, fumarate hydratase, transketolase, NADH dehydrogenase [ubiquinone] flavoprotein 2 and glutathione transferase omega-1. A single injection of COC differently alters the NAC proteome of E and NE rats; thus in E COC animals there was an alteration in the expression of 6 proteins, including dihydropyrimidinase-related protein 2 and NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10; whereas in NE COC rats 9 proteins were altered (including alpha-synuclein, peroxiredoxin-2 and peroxiredoxin-5). These proteins could be potential biomarkers of individual vulnerability to cocaine abuse and may be helpful in designing new treatments for cocaine addiction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2009.04.005DOI Listing

Publication Analysis

Top Keywords

nucleus accumbens
8
vulnerability cocaine
8
cocaine addiction
8
cocaine-seeking behaviour
8
protein expression
8
single injection
8
nadh dehydrogenase
8
dehydrogenase [ubiquinone]
8
rats
6
proteomic analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!