The group B streptococcal serine-rich repeat 1 glycoprotein mediates penetration of the blood-brain barrier.

J Infect Dis

Department of Pediatrics and 2Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA 92182, USA.

Published: May 2009

Background: Group B Streptococcus (GBS) is the leading cause of bacterial meningitis in newborn infants. Because GBS is able to invade, survive, and cross the blood-brain barrier, we sought to identify surface-expressed virulence factors that contribute to blood-brain barrier penetration and the pathogenesis of meningitis.

Methods: Targeted deletion and insertional mutants were generated in different GBS clinical isolates. Wild-type and mutant bacteria were analyzed for their capacity to adhere to and invade human brain microvascular endothelial cells (hBMECs) and to penetrate the blood-brain barrier using our model of hematogenous meningitis.

Results: Analysis of a GBS (serotype V) clinical isolate revealed the presence of a surface-anchored serine-rich protein, previously designated serine-rich repeat 1 (Srr-1). GBS Srr-1 is a glycosylated protein with high molecular weight. Deletion of srr1 in NCTC 10/84 resulted in a significant decrease in adherence to and invasion of hBMECs. Additional mutants in other GBS serotypes commonly associated with meningitis showed a similar decrease in hBMEC invasion, compared with parental strains. Finally, in mice, wild-type GBS penetrated the blood-brain barrier and established meningitis more frequently than did the Deltasrr1 mutant strain.

Conclusions: Our data suggest that GBS Srr glycoproteins play an important role in crossing the blood-brain barrier and in the development of streptococcal meningitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674616PMC
http://dx.doi.org/10.1086/598217DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
24
serine-rich repeat
8
gbs
8
blood-brain
6
barrier
6
group streptococcal
4
streptococcal serine-rich
4
repeat glycoprotein
4
glycoprotein mediates
4
mediates penetration
4

Similar Publications

Using a pediatric-focused lens, this review article briefly summarizes the presentation of several demyelinating and neuroinflammatory diseases using conventional magnetic resonance imaging (MRI) sequences, such as T1-weighted with and without an exogenous gadolinium-based contrast agent, T2-weighted, and fluid-attenuated inversion recovery (FLAIR). These conventional sequences exploit the intrinsic properties of tissue to provide a distinct signal contrast that is useful for evaluating disease features and monitoring treatment responses in patients by characterizing lesion involvement in the central nervous system and tracking temporal features with blood-brain barrier disruption. Illustrative examples are presented for pediatric-onset multiple sclerosis and neuroinflammatory diseases.

View Article and Find Full Text PDF

Epsilon Toxin from Induces the Generation of Extracellular Vesicles in HeLa Cells Overexpressing Myelin and Lymphocyte Protein.

Toxins (Basel)

December 2024

Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain.

Epsilon toxin (ETX) from is a pore-forming toxin (PFT) that crosses the blood-brain barrier and binds to myelin structures. In in vitro assays, ETX causes oligodendrocyte impairment, subsequently leading to demyelination. In fact, ETX has been associated with triggering multiple sclerosis.

View Article and Find Full Text PDF

Aims: This study investigated the protective role of Annexin A1 (ANXA1) in sepsis-associated encephalopathy (SAE) by examining its effects on brain vascular endothelium and blood-brain barrier (BBB) integrity.

Methods: Mice were divided into four groups: wild type (WT), cecal ligation and puncture (CLP), ANXA1 knockout (ANXA1[-/-]), and ANXA1(-/-) with CLP. Neurobehavioral changes were assessed using the Y-maze test, while BBB integrity was evaluated through Evans blue dye (EBD) staining and permeability tests with fluorescein isothiocyanate (FITC)-dextran.

View Article and Find Full Text PDF

QSP Modeling Shows Pathological Synergism Between Insulin Resistance and Amyloid-Beta Exposure in Upregulating VCAM1 Expression at the BBB Endothelium.

CPT Pharmacometrics Syst Pharmacol

December 2024

Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA.

Type 2 diabetes mellitus (T2DM), characterized by insulin resistance, is closely associated with Alzheimer's disease (AD). Cerebrovascular dysfunction is manifested in both T2DM and AD, and is often considered as a pathological link between the two diseases. Insulin signaling regulates critical functions of the blood-brain barrier (BBB), and endothelial insulin resistance could lead to BBB dysfunction, aggravating AD pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!