Coherent electronic transport through graphene constrictions: subwavelength regime and optical analogy.

Phys Rev Lett

Institut Néel, CNRS and UJF, Grenoble, France and European Theoretical Spectroscopy Facility (ETSF), Grenoble, France.

Published: April 2009

Nanoelectronic devices smaller than the electron wavelength can be achieved in graphene with current lithography techniques. Here we show that the electronic quantum transport of graphene subwavelength nanodevices presents deep analogies with subwavelength optics. We introduce the concept of electronic diffraction barrier to represent the effect of constrictions and the rich transport phenomena of a variety of nanodevices. Results are presented for Bethe and Kirchhoff diffraction in graphene slits and Fabry-Perot interference oscillations in nanoribbons. The same concept applies to graphene quantum dots and gives new insight into recent experiments in these systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.102.136803DOI Listing

Publication Analysis

Top Keywords

transport graphene
8
graphene
5
coherent electronic
4
electronic transport
4
graphene constrictions
4
constrictions subwavelength
4
subwavelength regime
4
regime optical
4
optical analogy
4
analogy nanoelectronic
4

Similar Publications

Scaling Behavior and Conductance Mechanisms of Ion Transport in Atomically Thin Graphene Nano/Subnanopores.

Nano Lett

January 2025

The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China.

Ion transport through atomically thin nano/subnanopores, such as those in monolayer graphene, presents challenges to traditional ion conduction models, primarily due to extreme confinement effects and hydration interactions. Under these conditions, existing models fail to account for conductance behaviors at the nano- and subnanometer scales. In this study, we perform a combined experimental and theoretical investigation of ion transport in monolayer graphene nano/subnanopores across varying salt concentrations.

View Article and Find Full Text PDF

In order to enhance the aging resistance, high temperature stability and low temperature crack resistance of asphalt pavement materials, 0.06% oxidized graphene (GO) and 12% polyurethane (PU) were used as composite modifiers to modify the base asphalt. The RTFOT test was conducted to evaluate the anti-aging performance of the modified asphalt.

View Article and Find Full Text PDF

The two-dimensional lamellar materials disperse platinum sites and minimize noble-metal usage for fuel cells, while mass transport resistance at the stacked layers spurs device failure with a significant performance decline in membrane electrode assembly (MEA). Herein, we implant porous and rigid sulfonated covalent organic frameworks (COF) into the graphene-based catalytic layer for the construction of steric mass-charge channels, which highly facilitates the activity of oxygen reduction reactions in both the rotating disk electrode (RDE) measurements and MEA device tests. Specifically, the normalized mass activity is remarkably boosted by 3.

View Article and Find Full Text PDF

Graphdiyne (GDY), which is composed of benzene rings and acetylene linkage units, is a new allotrope of carbon material. In particular, the large triangular pores of GDY, with a diameter of 5.4 Å, theoretically predict a higher lithium embedding density than traditional graphite anodes, making it a promising candidate for energy storage materials in lithium-ion (Li-ion) batteries.

View Article and Find Full Text PDF

High-Efficiency (21.4%) Carbon Perovskite Solar Cells via Cathode Interface Engineering by using CuPc Hole-Transporting Layers.

Angew Chem Int Ed Engl

January 2025

EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.

Carbon perovskite solar cells (C-PSCs) represent a promising photovoltaic technology that addresses the long-term operating stability needed to compete with commercial Si solar cells. However, the poor interface contacts between the carbon electrode and the perovskite result in a gap between C-PSC's performances and state-of-the-art PSCs based on metallic back electrodes. In this work, Cu (II) phthalocyanine (CuPc) was rediscovered as an effective hole-transporting material (HTM) to be coupled with carbon electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!