The origin of reaction and substrate specificity and the control of activity by protein-protein interaction are investigated using the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium. We have compared some spectroscopic and kinetic properties of the wild type beta subunit and five mutant forms of the beta subunit that have altered catalytic properties. These mutant enzymes, which were engineered by site-directed mutagenesis, have single amino acid replacements in either the active site or in the wall of a tunnel that extends from the active site of the alpha subunit to the active site of the beta subunit in the alpha 2 beta 2 complex. We find that the mutant alpha 2 beta 2 complexes have altered reaction and substrate specificity in beta-elimination and beta-replacement reactions with L-serine and with beta-chloro-L-alanine. Moreover, the mutant enzymes, unlike the wild type alpha 2 beta 2 complex, undergo irreversible substrate-induced inactivation. The mechanism of inactivation appears to be analogous to that first demonstrated by Metzler's group for inhibition of two other pyridoxal phosphate enzymes. Alkaline treatment of the inactivated enzyme yields apoenzyme and a previously described pyridoxal phosphate derivative. We demonstrate for the first time that enzymatic activity can be recovered by addition of pyridoxal phosphate following alkaline treatment. We conclude that the wild type and mutant alpha 2 beta 2 complexes differ in the way they process the amino acrylate intermediate. We suggest that the wild type beta subunit undergoes a conformational change upon association with the alpha subunit that alters the reaction specificity and that the mutant beta subunits do not undergo the same conformational change upon subunit association.
Download full-text PDF |
Source |
---|
PLoS One
January 2025
Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, Davis, California, United States of America.
In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China).
Singly occupied molecular orbital (SOMO) activation of in situ generated enamines has achieved great success in (asymmetric) α-functionalization of carbonyl compounds. However, examples on the use of this activation mode in the transformations of other functional groups are rare, and the combination of SOMO activation with transition metal catalysis is still less explored. In the area of deoxygenative functionalization of amides, intermediates such as iminium ions and enamines were often generated in situ to result in the formation of α-functionalized amines.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130.
Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions.
View Article and Find Full Text PDFTransl Pediatr
December 2024
Central Laboratory, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang, China.
Background: Oral microbiome homeostasis is important for children's health, and microbial community is affected by anesthetics. The application of anesthetics in children's oral therapy has become a relatively mature method. This study aims to investigate the effect of different anesthesia techniques on children's oral microbiota.
View Article and Find Full Text PDFJ Carbohydr Chem
April 2024
Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
Glycosylphosphatidylinositol (GPI) anchors contain a unique α-D-glucosamine-(1→6)--inositol [αGlcN(1,6)Ins] motif in their conserved core structure. To facilitate investigations of the functional roles of this structural motif, two GPI analogues containing unnatural βGlcN(1,6)Ins, instead of αGlcN(1,6)Ins, and an alkyne group at different positions of the GPI core were designed and synthesized. To this end, an orthogonally protected pseudopentasaccharide derivative of GPIs with the βGlcN(1,6)Ins motif was convergently constructed via [3+2] glycosylation and used as the common intermediate to prepare both GPI analogues by streamlined synthetic protocols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!