We present the first neutron spin echo (NSE) measurements of self-assembling peptide hydrogel networks to study the fibril dynamics on the nanometer and nanosecond length and time scales. MAX1 and MAX8 are synthetic beta-hairpin peptides that undergo triggered self-assembly at the nanoscale to form a physically cross-linked network of fibrils with a defined cross-section. When subjected to physiological pH and ionic strength (pH 7.4, 150 mM NaCl), the soluble peptides fold into a beta-hairpin and, subsequently, self-assemble to form a structurally rigid hydrogel stabilized by noncovalent cross-links. The sequence of MAX8 is identical to MAX1 with the exception of one single amino acid substitution that reduces the net charge on the peptide. As a result, faster folding and self-assembly kinetics are observed for MAX8 at the same peptide concentration and identical buffer conditions, and gels with a larger storage modulus are formed. NSE measurements of the peptide hydrogels demonstrate that the self-assembled peptide fibrils can be described as semiflexible chains on nanolength and time scales. Alteration of the peptide sequence affected the nanoscale dynamics of the hydrogels but not to an extent comparable to the large difference observed in the bulk viscoelasticity. Small angle neutron scattering (SANS) of the hydrogels reveals increased scattering for MAX8 at low wavevectors, an indication of a heterogeneous network with a tighter mesh size. Therefore, we conjecture that the difference in elastic modulus arises from differences in assembly kinetics that result in increased fibrillar branching and physical cross-links rather than a change in the fibril nanostructure or persistence length.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738993 | PMC |
http://dx.doi.org/10.1021/bm801396e | DOI Listing |
Sci Rep
January 2025
UNESCO Centre of Water Law, Policy & Science, University of Dundee, Dundee, UK.
Understanding snow and ice melt dynamics is vital for flood risk assessment and effective water resource management in populated river basins sourced in inaccessible high-mountains. This study provides an AI-enabled hybrid approach integrating glacio-hydrological model outputs (GSM-SOCONT), with different machine learning and deep learning techniques framed as alternative 'computational scenarios, leveraging both physical processes and data-driven insights for enhanced predictive capabilities. The standalone deep learning model (CNN-LSTM), relying solely on meteorological data, outperformed its counterpart machine learning and glacio-hydrological model equivalents.
View Article and Find Full Text PDFOrthop Res Rev
January 2025
Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, People's Republic of China.
Background: Granular cell tumor (GCT) is a rare soft tissue tumor characterized by Schwann cell differentiation. While GCT can occur in any part of the body, it is less common in the lower limbs. We report a case of a giant atypical GCT located in the left thigh, the tumor was initially small and painless at the time of discovery but gradually grew to 17 cm over a two-year period.
View Article and Find Full Text PDFEarly Hum Dev
January 2025
Division of Neonatology, Department of Maternal, Fetus and Perinatal Center, Saitama Children's Medical Center, Saitama, Japan.
Background: Hypoxic-ischemic encephalopathy (HIE) is still associated with death and sequelae including cerebral palsy and intellectual disability despite induced hypothermia. Biomarkers, as early predictive indicators of adverse outcomes, are lacking.
Aims: To investigate whether post-rewarming cerebrospinal fluid (CSF)-neuro-specific enolase (NSE) levels after hypothermia are associated with neurodevelopmental outcomes at age six years, alone or when combined with amplitude-integrated electroencephalography (aEEG) and brain magnetic resonance imaging (MRI), as neuroimaging and neurophysiological indicators, respectively.
PLoS One
January 2025
The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China.
Background: Postoperative cognitive dysfunction (POCD) is associated with an increased risk of dementia and may lead to chronic neurodegeneration. The utilization of intraoperative Transcutaneous Electrical Acupoint Stimulation (TEAS) in conjunction with anesthesia is expected to become an effective preventive measure for POCD in clinical practice.
Methods: We conducted a comprehensive literature review focusing on the use of TEAS in the prevention of POCD during surgical anesthesia.
J Colloid Interface Sci
April 2025
Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. Electronic address:
The adjustment of the electrochemiluminescence (ECL) of polymeric carbon nitride (CN) is essential for its application in sensitive immunoassays. However, such modification through aggregation-induced emission (AIE) has not yet been reported. Herein, aggregation-induced ECL in CN oligomer (CNO) was induced through the introduction of a rotatable imine moiety, with the resulting material exhibiting excellent performance in the targeted immunodetection of neuron-specific enolase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!