Experimental data on the molecular structure and variability of microsatellite loci in unisexual and bisexual lizard species of the genus Darevskia were analyzed. The allelic variants of Du281 and Du47 were found to differ in the number of monomers, the structure of microsatellite clusters, and point mutations in these clusters and flanking DNA. Interspecific comparison of alleles of these loci revealed both variable regions in the microsatellite clusters and allele-specific evolutionarily conserved nucleotide groups. In general, the results of comparative structural analysis of allelic variants testify to a high genetic similarity of the unisexual and bisexual lizard species studied and reveals the characteristic features of their interspecies variability.

Download full-text PDF

Source

Publication Analysis

Top Keywords

allelic variants
12
unisexual bisexual
12
bisexual lizard
12
lizard species
12
microsatellite loci
8
du281 du47
8
species genus
8
microsatellite clusters
8
[molecular structure
4
structure allelic
4

Similar Publications

Case-only designs in longitudinal cohorts are a valuable resource for identifying disease-relevant genes, pathways, and novel targets influencing disease progression. This is particularly relevant in Alzheimer's disease (AD), where longitudinal cohorts measure disease "progression," defined by rate of cognitive decline. Few of the identified drug targets for AD have been clinically tractable, and phenotypic heterogeneity is an obstacle to both clinical research and basic science.

View Article and Find Full Text PDF

Importance: Recently, the US Food and Drug Administration gave premarketing approval to an algorithm based on its purported ability to identify individuals at genetic risk for opioid use disorder (OUD). However, the clinical utility of the candidate genetic variants included in the algorithm has not been independently demonstrated.

Objective: To assess the utility of 15 genetic variants from an algorithm intended to predict OUD risk.

View Article and Find Full Text PDF

Proto-oncogene KRAS, GTPase (KRAS) is one of the most intensively studied oncogenes in cancer research. Although several mouse models allow for regulated expression of mutant KRAS, selective isolation and analysis of transforming or tumor cells that produce the KRAS oncogene remains a challenge. In our study, we present a knock-in model of oncogenic variant KRAS that enables the "activation" of KRAS expression together with production of red fluorescent protein tdTomato.

View Article and Find Full Text PDF

Background: Understanding the genetic etiology of Alzheimer's disease (AD) has been a major focus of research in neurodegenerative diseases. Amid the three common allelic variants of the apolipoprotein E (APOE) gene in humans, called APOE ε2, ε3 and ε4, the ε4 allele is the most common genetic risk factor for late-onset AD, being found in 20% of the world population.

Method: We used Event-Related Potentials (ERP) and Event-Related Spectral Perturbation (ERSP) as features for classification of apolipoprotein E ϵ4 (APOE ε4) allele carriers in AD patients and healthy controls.

View Article and Find Full Text PDF

Purpose: The detection of circulating tumor DNA (ctDNA) after curative-intent therapy in early breast cancer (EBC) is highly prognostic of disease recurrence. Current ctDNA assays, mainly targeting single nucleotide variants (SNVs), vary in sensitivity and specificity. While increasing the number of SNVs in tumor-informed assays improves sensitivity, structural variants (SVs) may achieve similar or better sensitivity without compromising specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!