Coagulase-negative staphylococci and its subtype Staphylococcus epidermidis are major indigenous Gram-positive inhabitants of the human skin. Colonization occurs in direct connection with birth and terrestrial adaptation. This study focuses on factors that may influence skin colonization of the newborn infant that relates to the immune status of both the bacteria and the host. Skin is an effective barrier against bacteria, and this function is partly mediated by the presence of antimicrobial peptides including human cathelicidin peptide LL37. Gram-positive bacteria have been described to have adhesive pili on their surface that mediates specific attachment to the host. Here, we identify, by negative staining transmission electron microscopy (EM), two different types of pilus-like structures commonly expressed on S. epidermidis isolated from newborn infants. We also show that the cathelicidin antimicrobial peptide LL37, constitutively expressed in the skin barrier of the newborn, significantly inhibited growth of S. epidermidis indicating its importance for the ecological stability of the skin microbiota. Further studies are required to elucidate molecular mechanisms of host-microbe interactions, both for the maintenance of a mutually beneficial homeostatic relationship and for the protection of self when it results in overt disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1203/PDR.0b013e3181a9d80c | DOI Listing |
Int J Pharm
January 2025
Key Laboratory of Biopharmaceutical Preparation and Delivery, State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Beijing 100190 China; Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 China. Electronic address:
Trauma healing is the process of healing after the body has been subjected to an external force and the skin and other tissues have become dissected or defective, showing the synergistic effect of various processes. Therefore, the investigation of innovative wound dressings has significant research and clinical implications. In this study, we constructed a zinc based metal-organic framework (MOF) and loaded with antimicrobial peptide LL37 to prepare LL37@ZPF-2 (ZPF = zeolite pyrimidine backbone), which was subsequently integrated with Poloxamer 407 to fabricate LL37@ZPF-2 thermosensitive hydrogel.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Department of Pediatrics, University of California Irvine School of Medicine, Irvine, CA 92697, USA.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is associated with high rates of treatment failure, even when antibiotics showing in vitro susceptibility are used. Early optimization of therapy is crucial to reduce morbidity and mortality. Building on our previous research on carbapenem therapy for methicillin-susceptible S.
View Article and Find Full Text PDFPathogens
December 2024
M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
Today, is still the most common cause of both local and life-threatening systemic candidiasis. The spread of resistant fungal strains has resulted in an urgent need to search for new promising antimycotics. Here, we investigated the antifungal action of the tobacco defensin NaD1 against susceptible and resistant to azoles and echinocandins strains of .
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland.
Acne vulgaris (AV) is a chronic inflammatory condition of the pilosebaceous units characterized by multiple immunologic, metabolic, hormonal, genetic, psycho-emotional dysfunctions, and skin microbiota dysbiosis. The latter is manifested by a decreased population (phylotypes, i.e.
View Article and Find Full Text PDFBackground: Methicillin-resistant Staphylococcus aureus (MRSA) is a leading pathogen causing severe endovascular infections. The prophage-encoded protein Gp05 has been identified as a critical virulence factor that contributes to MRSA persistence during vancomycin (VAN) treatment in an experimental endocarditis model. However, the underlining mechanisms driving this persistence phenotype remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!