The ubiquitin-proteasome system is a key proteolytic pathway activated during skeletal muscle atrophy. The proteasome, however, cannot degrade intact myofibrils or actinomyosin complexes. In rodent models of diabetes mellitus and uremia, caspase-3 is involved in actinomyosin cleavage, generating fragments that subsequently undergo ubiquitin-proteasome-mediated degradation. Here, we demonstrate that caspase-3 also mediates denervation-induced muscle atrophy. At 2 wk after tibial nerve transection, the denervated gastrocnemius of caspase-3-knockout mice weighed more and demonstrated larger fiber-type-specific cross-sectional area than the denervated gastrocnemius of wild-type mice. However, there was no difference between caspase-3-knockout and wild-type denervated muscles in the magnitude or pattern of actinomyosin degradation, as determined by Western blotting for actin and the 14-kDa actin fragment. Similarly, there was no difference between caspase-3-knockout and wild-type denervated muscles in the magnitude of increase in proteasome activity, total protein ubiquitination, or atrogin-1 and muscle-specific ring finger protein 1 transcript levels. In contrast, there was an increase in TdT-mediated dUTP nick end label-positive nuclei in the denervated muscle of wild-type compared with caspase-3-knockout mice. Apoptotic signaling upstream of caspase-3 remained intact, with equivalent mitochondrial Bax translocation and cytochrome c release and caspase-9 activation in the denervated gastrocnemius muscle of wild-type and caspase-3-knockout mice. In contrast, diminished poly(ADP-ribose) polymerase cleavage in the denervated muscle of caspase-3-knockout compared with wild-type mice revealed that apoptotic signaling downstream of caspase-3 was impaired, suggesting that the absence of caspase-3 protects against denervation-induced muscle atrophy by suppressing apoptosis as opposed to ubiquitin-proteasome-mediated protein degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.90932.2008DOI Listing

Publication Analysis

Top Keywords

muscle atrophy
16
denervated gastrocnemius
12
caspase-3-knockout mice
12
absence caspase-3
8
caspase-3 protects
8
protects denervation-induced
8
skeletal muscle
8
denervation-induced muscle
8
wild-type mice
8
difference caspase-3-knockout
8

Similar Publications

This study aims to investigate the association between serum copper (Cu), selenium (Se), zinc (Zn), Se/Cu and Zn/Cu ratios and the risk of sarcopenia. In this study, which involved 2766 adults aged ≥ 20 years enrolled in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2016, multivariable logistic regression, restricted cubic spline (RCS) models and mediation analyses were used. After full adjustment, multivariable logistic regression revealed that higher serum copper levels were correlated with an increased risk of sarcopenia.

View Article and Find Full Text PDF

Can We Maintain Muscle Mass on a Plant-Based Diet?

Curr Nutr Rep

January 2025

Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.

Purpose Of Review: This review aims to determine whether muscle mass and function can be effectively maintained without relying on animal-based protein sources. We evaluate the quality, digestibility, and essential amino acid profiles of plant-based proteins to understand their potential in preventing and managing sarcopenia.

Recent Finding: Recent studies indicate that while animal-based proteins have traditionally been considered the gold standard for supporting muscle protein synthesis, certain plant-based protein blends, fortified with leucine or other essential amino acids, can produce comparable anabolic responses.

View Article and Find Full Text PDF

Background: Sarcopenia is a condition characterized by inadequate muscle and function decline and is often associated with ageing and cancer. It is established that sarcopenia and muscle loss occurred during treatment are associated with the clinical outcomes of patients with cancer. This systematic review and meta-analysis aims to evaluate the association between sarcopenia at pretreatment and during treatment and overall survival or disease progression in patients with cervical cancer.

View Article and Find Full Text PDF

Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.

View Article and Find Full Text PDF

Background: β-Hydroxy-β-methyl butyrate (HMB) is a metabolite of the amino acid leucine, known for its ergogenic effects on body composition and strength. Despite these benefits, the magnitude of these effects remains unclear due to variability among studies. This umbrella review aims to synthesize meta-analyses investigating the effects of HMB on body composition and muscle strength in adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!