Secreted proteins play an important part in the pathogenicity of Mycobacterium tuberculosis, and are the primary source of vaccine and diagnostic candidates. A majority of these proteins are exported via the signal peptidase I-dependent pathway, and have a signal peptide that is cleaved off during the secretion process. Sequence similarities within signal peptides have spurred the development of several algorithms for predicting their presence as well as the respective cleavage sites. For proteins exported via this pathway, algorithms exist for eukaryotes, and for Gram-negative and Gram-positive bacteria. However, the unique structure of the mycobacterial membrane raises the question of whether the existing algorithms are suitable for predicting signal peptides within mycobacterial proteins. In this work, we have evaluated the performance of nine signal peptide prediction algorithms on a positive validation set, consisting of 57 proteins with a verified signal peptide and cleavage site, and a negative set, consisting of 61 proteins that have an N-terminal sequence that confirms the annotated translational start site. We found the hidden Markov model of SignalP v3.0 to be the best-performing algorithm for predicting the presence of a signal peptide in mycobacterial proteins. It predicted no false positives or false negatives, and predicted a correct cleavage site for 45 of the 57 proteins in the positive set. Based on these results, we used the hidden Markov model of SignalP v3.0 to analyse the 10 available annotated proteomes of mycobacterial species, including annotations of M. tuberculosis H37Rv from the Wellcome Trust Sanger Institute and the J. Craig Venter Institute (JCVI). When excluding proteins with transmembrane regions among the proteins predicted to harbour a signal peptide, we found between 7.8 and 10.5% of the proteins in the proteomes to be putative secreted proteins. Interestingly, we observed a consistent difference in the percentage of predicted proteins between the Sanger Institute and JCVI. We have determined the most valuable algorithm for predicting signal peptidase I-processed proteins of M. tuberculosis, and used this algorithm to estimate the number of mycobacterial proteins with the potential to be exported via this pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885676PMC
http://dx.doi.org/10.1099/mic.0.025270-0DOI Listing

Publication Analysis

Top Keywords

signal peptide
24
proteins
15
signal peptides
12
mycobacterial proteins
12
signal
10
peptide prediction
8
prediction algorithms
8
secreted proteins
8
proteins exported
8
signal peptidase
8

Similar Publications

Genital tract infections are common causes of male infertility, and most of diagnosed men are asymptomatic. This study examined the effect of gallic acid (GA) against lipopolysaccharide (LPS)-induced testicular inflammation. Thirty-two Spraque Dawley, 2.

View Article and Find Full Text PDF

Pro-Arg, The Potential Anti-Diabetes Peptide, Screened from Almond by In-Silico Analysis.

Plant Foods Hum Nutr

January 2025

College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.

Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.

View Article and Find Full Text PDF

Enhanced pullulanase production through expression system optimization and biofilm-immobilized fermentation strategies.

Int J Biol Macromol

January 2025

National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Soochow University, Suzhou, Jiangsu 215123, PR China.

Pullulanase (PUL) plays a crucial role in breaking down α-1,6-glycosidic bonds in starch, a key process in starch processing and conversion. Based on PulB with high enzymatic activity, the expression of PUL in Bacillus subtilis was enhanced by plasmid screening, double promoter optimization, and signal peptide engineering. Furthermore, we innovatively employed a mussel foot protein to enhance the cell adhesion to carriers and utilized biofilm-based cell immobilization technology to optimize the fermentation process and stimulate biofilm formation.

View Article and Find Full Text PDF

Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment but can give rise to immune-related adverse events such as ICI-related diabetes mellitus (DM).

Case Presentation: We herein present the case of a 59-year-old Japanese man with malignant melanoma who developed ICI-related DM after 18 months of nivolumab treatment. He experienced marked hyperglycemia and diabetic ketoacidosis without a personal or family history of diabetes.

View Article and Find Full Text PDF

The Renin-Angiotensin System (RAS) is a complex neuroendocrine system consisting of a single precursor protein, angiotensinogen (AGT), which is processed into various peptide hormones, including the angiotensins [Ang I, Ang II, Ang III, Ang IV, Ang-(1-9), Ang-(1-7), Ang-(1-5), etc] and Alamandine-related peptides [Ang A, Alamandine, Ala-(1-5)], through intricate enzymatic pathways. Functionally, the RAS is divided into two axes with opposing effects: the classical axis, primarily consisting of Ang II acting through the AT receptor (ATR), and in contrast the protective axis, which includes the receptors Mas, ATR and MrgD and their respective ligands. A key area of RAS research is to gain a better understanding how signaling cascades elicited by these receptors lead to either "classical" or "protective" effects, as imbalances between the two axes can contribute to disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!